


I 
The following is a collection of notes geared to  provide an elementary introduc- 
tion t o  t h e  topic of data assimilation. The topic is presented with the point 
of view of estimation theory. As such, the first half of these notes is devoted 
t o  presenting basic concepts of probability theory, stochastic processes, esti- 
mation and filtering. The second half of these notes gives an introduction t o  
atmospheric data assimilation and related problems. Illustrations of advanced 
assixdation procedures are given by iliscussirig resuits from the appiication of 
Kalman filtering and smoothing to  a linear shallow-water model. 

Classes based on earlier versions of these notes have been presented at the Insti- 
tuto de Matem6tica Pura e Aplicada, in Rio de Janeiro, at the Department of 
Meteorology of University of Maryland, and at Laboratorio Nacional de Com- 
putacfio Cienthca, Rio de Janeiro. 
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Chapter 1 

Fundamental Concepts of 
Probability Theory 

1.1 Probability Space 

1.1.1 The Probability Triplet 

The probability space is formally defined through the probability triplet (0, f?, P )  where, 

0 R: is the  sample space, which contains all possible outcomes of a n  experiment. 

0 f?: is a set of subsets of R (a Bore1 field - a closed set under operations of union, 
intersection and complement) 

0 P: is a scalar function defined on f?, called the probability function or probability 
measure. 

Each set B E f? is called a n  event, that is, B is a collection of specific possible outcomes. 
In what  follows: the mathematical details corresponding to the field f? will be ignored (e.g., 
see Chung [26], for a detailed treatment). The values w E 52 are the realizations, and for 
each set B E 13, the function P ( B )  defines the probability that the realization w is in B. 
The quantity P is a probability function if it satisfies the following axioms: 

1. 0 5 P(B)  5 1, for all B E f? 

2. P ( 0 )  = 1 

3. P ( U z ,  B;) = C,e",, P(B;) ,  for all disjoint sequences of B; E f?. 



1.1.2 Conditional Probability 

If A and B are two events and P(B)  # 0, the conditional probability of A given B is 
defined as 

P(A1B) = P ( A  n B ) / P ( B )  (1.1) 
The events A and B are statistically independent if P ( A ( B )  = P ( A ) .  Consequently, P ( A  n 
B )  = P ( A ) P ( B ) .  

Analogously, 

for all P ( A )  # 0. 

Combining the two relations above we have: 

which is known as Bayes rule (or theorem) for probabilities. This relation is useful when 
we need to  reverse the condition of events. 

1.2 Random Variables 

A scalar x(w) random variable (r.v.) is a function, whose value x is determined by the result 
w of a random experiment. Note the typographical distinction between both quantities. In 
other words, an r.v. x(w) attributes a real number z to each point of the sample space. 
The  particular value z assumed by the random variable is referred to as a realization. A 
random variable is defined in such a way that all sets B C R of the form 

B = {u : x(w) 5 <} 

are in f3, for any value of < E R1. 

1.2.1 Distribution and Density Functions 

Each r.v. has a distribution function defined as 

Fx(2) = P({w : x(w) 5 x}) , 
which represents the probability that x is less than or equal t o  x. 

It follows, directly from the properties of the probability measure given above, that  Fx(z)  
should be a non-decreasing function of 2, with Fx(-oc) = 0 and Fx(00) = 1. Under 
reasonable conditions, we can define a function called a probability density function, derived 
from the distribution function: 

d F X ( X )  
px(.) = - dx ' 

2 



Table 1.1: Properties of probability density functions and distribution functions 

Consequently: the inverse relation 

provides the distribution function. The probability density function should be non-negative, 
and its integral over the real line should be unity. Table 1.1 presents a summary of the 
properties of probability density functions and distribution functions. 

A few examples of continuous distribution functions are given below: 

(1) Uniform: 
\ I  

a < x < b  
px(4 = 0 otherwise 

0 x < a  

1 x > b  
a < x < b  

(ii) Exponential: 

(iii) Rayleigh: 

(iv) Gaussian: 

o < x  
otherwise 

where erf (x) is the  error function (Arfken [5], p. 568): 

erf(x) = - e-Y2 I 2  dy 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

3 



Remark: An r.v. with Gaussian distribution is said to  be normally distributed, with 
mean p and variance (r2 (see following section) and is represented symbolically by 
x N N ( p ,  02)- 

(iv) x 2  (Chi-square): 

where r (v )  is the gamma function (Arfken [5],  Chapter 10): 

(1.17) 

(1.18) 

(1.19) 

Remarks: An r.v. that is x2 distributed h a s  the form: x2 = xi + x i  + . - - +  x;, with the 
variables x;, for i = 1 , 2 , .  a * ,  Y, being normally distributed with mean zero and unity 
variance. 

1.2.2 Expectations and Moments 

The  mean of an r.v. x is defined as 

(1.20) 

In this course we will use interchangeably the expressions expected value and expectation 
as synonyms for mean. There are extensions of this definition for those cases in which 
the probability density m ( x )  does not exist; however in the context that  interests us ,  the 
definition above is sufficient. Any measurable function of an r.v. is also an r.v. and its 
mean is given by: 

f{f(x)} = Jm f ( 4  P x ( 4  * (1.21) 
-cc 

In particular, if f(x) = a = const., & { a }  = a, due to  property (e) in Table 1.1. 

A function of special interest is f (x)  = xn, where n is a positive integer. The means 
00 

f{x"} = x"px(x)dx, 

(1.22) 

(1.23) 

define the moments of order n of x. In particular, E{x2}  is called the mean-square value. 
The  exDectations 

&{ (x - E{x})"} z (x - E{x})"px(x)dz, 
-a3 

(1.24) 

4 



define the n-th moments of x about its mean (n-th central moment). 

The second moment of x about its mean is called the variance of x, and is given by: 

vur(x) = f{(x - = f{x2} - 2f{xf{x}} + (&{x})2 
= E{.’} - (f{x})2. (1.25) 

That  is, the variance is the mean-square minus the square of the mean. Finally, the standard 
deviation is defined as the square-root of the variance: 

.(x) E J[vur(x)]. (1.26) 

It is worth mentioning at  this point that in many cases, the mean value of an r.v. is used 
as a guess (or estimate) for the true value of that  variable. Other quantities of interest in 
this sense are the median, the mid-range, and the mode values. The median is given by 

1 
2 

px(x) dx = ly px(x) dx = - ,  

the mid-range poc is given by 

(1.27) 

(1.28) 

and the mode m is given by 

(1.29) 

The median divides the probability density function in two, each one covering the same area. 
The mode corresponds to  values of the random variable for which the probability density 
function is maximum, that is, it corresponds to the most likely value. The importance, and 
more general meaning, of these quantities will become clear as we advance. 

1.2.3 Characteristic Function 

An r.v. can be represented, alternatively, by its characteristic function which is defined a s  

Cix(u) E f{ exp(iux)} (1.30) 

where i = fl. 

According to  the definition (1.20) of mean we see that the characteristic function is nothing 
more than the Fourier transform of the density function: 

(1.31) 

from this it follows that the probability density is the inverse Fourier transform of the 
characteristic function, that  is: 

(1.32) 
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Let us now take the derivative of the characteristic function (1.31) with respect t o  u: 
00 

- -  d'X(u) - \ exp(iux)px(z) dx , du du 

= i&{xexp(iux)}, (1.33) 

where we used the definition of characteristic function to get the last equality. Notice that 
by choosing calculate the expression above for at u = 0 we have 

Flu=o = i&{x}, 

or better yet, 

(1.34) 

(1.35) 

which give an alternative way of calculating the first moment, if the characteristic function 
is given. As a matter of fact moments of order n can be calculated analogously, by taking n 
derivatives of the characteristic function and evaluating the result at u = 0. This procedure 
Droduces the eauation 

(1.36) 

for the n-th moment. 

1.3 Jointly Distributed Random Variables 

1.3.1 Distribution, Density Function and Characteristic Function 

The r.v.'s x ~ , - . ~ , x ,  are said t o  be jointly distributed if they are defined in the same 

Fx l...xn G P{w :XI  5 x 1 , - - . , x n  5 2,) (1.37) 

{w:xl  ~x1,...,xn~x~}={x1(~)~xl)n...n{x,(w) <xn} (1.38) 

probability space. They can be characterized by the joint distribution function 

where 

or alternatively, by their joint density function: 

assuming the existence of the derivatives. 

The characteristic function of jointly distributed r.v.'s xl ,  . x, is defined as: 

(1.40) 

(1.41) 
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1.3.2 Expectations and Moments 

If f is a function of jointly distributed r.v.'s x i ,  
y =  f (x l , - . - , x , ) :  then 

e ,  x,, and 

J-00 J-00 

The expected value of xk is given by 

J-00 J-00 
(1.43) 

and its second-order moment is given by 

Moments of higher order and central moments can be introduced in analogy to  the defini- 
tions in Section 1.2.2. Joint moments and joint central moments can be defined as: 

(1.46) 

respectively, where a and ,8 are positive integers. 

Notice that the characteristic function, of the jointly dist.ributed r.v.'s, gives a convenient 
way of computing moments: just as it did in the scalar case. Taking the first derivative of 
the characteristic function (1.41) with respect to  component uk we have 

(1.47) 

Evaluating this derivative at (u1, . . . , u,) = (0, . . , O )  provides a way to  compute the first 
moment with respect t o  component Xk,  that  is, 

(1.48) 

Successive n derivatives, with respect t o  arbitrary n components of (u1, 
the n-th non-central moment 

, u,) produce 

(1.49) 

Of fundamental importance is the concept of covariance between xk and xi, defined as: 

7 



and also, 

The ratio 

(1.51) 

(1.52) 

(1.53) 

defines the correlation coefficient between Xk and xe. Therefore, P(xk, Xk) = 1. 

It  is of frequent interest to obtain the probability distribution or density function of a 
random variable, given its corresponding joint function. That is, consider two r.v.'s x1 and 
x2, jointly distributed, then 

(1.54) 
J--00 J--00 

and analogously, Fx,(Q) = FX~X~(OO,Z~), where Fx,(z~) and Fx,(Q) , are referred to  as 
marginal distribution functions. The marginal density function is then given by 

(1.55) 

It is convenient, a t  this point, to  introduce a more compact notation utilizing vectors. Define 
the vector random variable (or simply the random vector) in n dimensions as: 

(1.56) 

where lower case bold letters refer to vectors, and T refers to  the transposition operation. 
By analogy with the notation we have utilized up t o  here, we will refer to  the value assumed 
by the random vector x as x = (2122.. -z,)~. In this manner, 

x = (x1x2 * * e x n )  T 

Likewise, the probability distribution can be written as 

(1.58) 

where we call attention for the notation dx = dxl . . mdx,, and similarly the probability 
density function becomes 

The  marginal probability density can be written as 

(1.59) 

(1.60) 
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According to  the definition of mean of a random variable, the mean of a random vector is 
given by the mean of its components: 

Analogously, the mean of a random matrix is the mean of the matrix elements. The matrix 
formed by the mean of the outer product of the vector x - &{x} with itself is the n x n 
covariance matrix: 

Px = w x  - f W ( X  - &WT> 
wur(x1) C O V ( X ~ , X ~ )  cow(x~,x,) 

cow(x2, X I )  vur(x2) cow(xl, zn) = I  cow(x,, 21) cov(x,, x2) * * * 

Notice that P, is a symmetric positive semi-definite matrix, that  is7 yP,yT 2 0, for all 
y E R”. 

(1.62) 

Two scalar r.v.’s x and y are said to  be independent if any of the (equivalent) conditions 
are satisfied: 

(1.63a) 
(1.63b) 
(1 .63~)  

Analogously, two vector r.v.’s x and y are said to  be jointly independent if 

PXY (2, Y) = Px(4Py(Y) (1.64) 

We say that two jointly distributed random vectors x and y are uncorrelated if 

coo(x, y) = 0, (1.65) 

since the correlation coefficient defined in (1.53) is null. As a matter of fact, two r.v.’s are 
said to  be orthogonal when 

E{xy T } = o .  (1.66) 

This equality is often referred to  as the orthogonality principle. 

The n r.v.k {XI: ..., xn} are said to  be jointly Gaussian, or jointly normal, if their joint 
probability density function is given by 

(1.67) 
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where the notation IPI stands for the determinant of P, and P-l refers to  the inverse of 
the matrix P. The vector x is said to be normally distributed or Gaussian, with mean 
p = E{x} and covariance P, and is abbreviated by x N(p,P). Observe that,  in  order 
to  simplify the notation, we temporarily eliminated the subscript x referring t o  the r.v. in  
question in p and P. 

Utilizing the vector notation, the joint characteristic function (1.41) can be written as: 

dX(u)  = L{ exp(iuTx) } . (1.68) 

In this  way, the characteristic function of a normally distributed random vector can be 
calculated using the expression above and the transformation of variables x = P112y + p, 
that is, 

where j /Jac[z (y)] 1 I is the absolute vz!ue ~f the dctcrminant sf  the Jacebiz  m ~ t r i x ,  defined 
as 

(1.70) 

of the transformation. Using the fact that  

we can write 

(1.71) 

Adding and subtracting (1/2)uTPu t o  complete the square in the integrand above, we 
obtain: 

1 
2 4X(u)  = exp(iuTp - -uTpu)  

and making use of the integral 

Sm exp (-kyTy) dy = JR 
-03 

(1.74) 
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we have that 
dX(u) = exp(iu T p - -u ' T  Pu) , (1.75) 

2 

is the characteristic function for a Gaussian distribution. 

In the calculation of the integral above we defined the vector y as a function of the random 
vector x and transformed the integral in to  a simpler integral. This gives an opportunity for 
u s  t o  mention a theorem relating functional transformation of random variable (vectors) and 
their respective probability distributions. Consider two n-dimensional random vectors x 
and y (not related to the characteristic function calculated above), that  are related through 
a function f as y = f(x), such that the inverse functional relation x = f-'(y) exists. In 
th is  case, the probability density py(y) of y can be obtained given the probability density 
px(x) of x by the transformation: 

where IIJac([f-*(y)]II is the absolute value of the determinant of the Jacobian of the inverse 
transformation of x in t o  y. A proof of th i s  theorem is given in Jazwinski [84], pp. 34-35. 

1.3.3 Conditional Expectations 

Motivated by the conditional probability concept presented in Section 1.1.2, we now in- 
troduce the concept of conditional probability density. If x and y are random vectors, the 
probability density that the event x occurs given that the event y occurred is defined as 

Analogously, reversing the meaning of x and y, 

and Bayes rule for probability densities immediately follows: 

(1.77) 

(1.78) 

(1.79) 

Based on the definition (1.77) we can define the conditional expectation (or mean) of an 
r.v. x given an r.v. y as: 

Now remember that the unconditional mean is given by 

11 
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and that the marginal probability density px(z) can be obtained from the joint probability 

244 = J _ _ P X y ( w ) d Y *  (1.82) 
00 

density Pxy(P, Y> as, 

Considering the definition (1.77) we can write, 

and substituting this result in (1.81) we have that 

(1.83) 

(1.84) 

where we used definition (1.80) of conditional expectation. The expression above is some- 
times referred to as the chain rule for conditional expectations. Analogously we can obtain: 

W ( x ,  Y)) = W{f(Xl Y)lYH * (1.85) 

We can also define the conditional covariance matrix as 

Pxly f{[x - qxlY>l[x - WY)lTIY1 7 (1.86) 

where we notice that P,ly is a random matrix, contrary to  what we encountered when we 
defined the unconditional covariance matrix (1.62). 

We will now prove the following important result for normally distributed r.v.'s: the con- 
ditional probability of two normally distributed random vectors x and y, with dimensions 
n and m respectively, is also normal and is given by: 

where 

and 
Pxly = P x  + P X Y P , Y Y  - P y )  7 

Pxly = p x  - p x y p ,  pxy * 
1 T  

(1.88) 

(1.89) 

Now consider the following vector z = [xT yTIT of dimension ( n  + m). This vector has mean 
pLZ given by 

and covariance P, that  can be written as 

(1.90) 

(1.91) 
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Let us  make use of the following equality (simple to  verify): 

(1.92) 

where Pxly is defined as in (1.89): and we are assuming that P;' exists. From this expres- 
sion, it follows that the determinant of the covariance matrix P, is 

(1.93) 

(Householder [83], p. 17). Moreover, we have that 

Therefore, multiplying P,' by ( z  - P,) on the left and by ( z  - p,) o n  the right, we have 

T -1 T -1 
( Z - P , )  p, ( Z - P , )  = b -  Px) PXlY(.: -Px) 

- (.: - Px) T px~ypxYp;l(Y -1  - P y )  

T -1 T p-1 

T -1 T 
- (Y - P y )  py px, - Px)  

+ 
+ (Y - P y )  T py -1  (Y - P y )  (1.95) 

(Y - P y )  p y  pxyp;llypxYp;l(Y - Py)  

and using the definition (1.88) we can write 

T -1 
(.: - PxIy)TP;:(.: - Pxly) = [(Z - Px) - PXYP,l(Y - P Y ) l  Pxly 

x [(.: - Px) - pxyp;'(Y - P y ) 1  

(Y - Py)  p y  PxyP;l'y(.: - Px) 

(y - Py)TP;lP:yP;I:PxYP,l(Y - Py)  

T -1 = (.:-Px) Pxly(.:-Px) 
- (.: - P x )  T PxlypxYp;l(Y -1 - P y )  

T -1 T - 

+ 
(1.96) 

so that  (1.95) reduces to  
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By the definition of conditional probability we have 

(1.98) 

and utilizing (1.93) and (1.97) we obtain 

1 T -1 1 
2 x exp[--(z - Px,,)T[Px - P X Y P ;  P x y l  (z - Px1y)I 

(1.99) 

which is the desired result. The assumption made above that the inverse of P, exists 
is not necessary. When this inverse does not exist, it is possible t o  show (Kalman [89]) 
that  the same result is still valid, but in place of the inverse of Py, we should utilize the 
pseudo-inverse PY+. 

The  calculation above involved construction of the joint probability distribution p ,  ( z )  of the 
random vector z = [xTyTIT. Let us assume for the moment that the two random vectors 
x and y are uncorrelated, that is, P,, = 0. Hence, referring back to (1.88) and (1.89) it 
follows that, 

Pxly = P x  

P x l y  = p x  

(1.100) 
(1.101) 

which is intuitively in agreement with the notion of independence. Introducing these results 
in (1.97) we have 

(1.102) T -1 T -1 T -1 (. - P z )  p z  ( z  - P z )  = (. - Px) p x  (z - Px) + (Y - Py)  p, (Y - P y )  

Moreover, it follows from (1.93) that for uncorrelated random vectors x and y, 

I P z l  = I P X I  1 %  (1.103) 

Thus, the joint probability density function p,(z) can then be written as 

(1.104) 
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This shows that two normally distributed random vectors that  are uncorrelated are also 
independent. We have seen earlier in this section that independence among random vari- 
ables implied they are uncorrelated; the contrary was not necessarily true. However, as we 
have just shown, the contrary is true in the case of normally distributed random variables 
(vectors). 

EXERCISES 

1. Using the definition of Rayleigh probability density function given in (1.12): (a) cal- 
culate the mean and standard deviation for a r.v. with that  distribution; (b) find the 
mode of the r.v., that is, is most likely value. 

2. (Brown [19], Problem 1.40) A pair of random variables, x e y,  have the following joint 
probability density function: 

1 O < y < 2 x e O < x < l  
0 em everywhere else 

Find E{xly = . 5 } .  [Hint: Use (1.77) to  find pxly(x) for y = 0.5, and then  integrate 
zpxly(z) t o  find E{xly = . 5 } . ]  

3. Consider a zero-mean Gaussian random vector, with probability density and charac- 

+,(u) = exp [ - l u ~ ~ u ]  1 , 
respectively. Show that the following holds for the first four moments of th i s  distri- 
bution: 

E{Xk} = 0 
f{xkxlxm} = 0 

f{xkxl} = P k l  

E{XkXlXmXn} = P k l P m n  + P k r n f i n  + P k n f i m  

where x;, i E { I C ,  1 ,  m, n},  are elements ofthe random vector x, and Pij, i , j  E {L, I, m, n} ,  
are elements of P. 

4. Show that the linear transformation of a normally distributed vector is also normally 
distributed. That is, show that for a given normally distributed vector x,  with mean 
px and covariance R,, the linear transformation 

y = A x + b  

produces a normally distributed vector y with mean p, = Apx + b and covariance 
R, = AR,AT. 

5 .  The log-normal distribution is defined by 

Show that: 
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(a) its mean and variance are 
2 12 p = xoe 

V U T ( X )  = xoe 2 2 (e 2 - 1) 

respectively; 

(b) introducing the variable 
2 z* = /?In(-) 

the probability density function px(x) above can be converted to  a Gaussian 
probability density function &(x) of the form 

Y 

1 (x* - x;)2 
PXX) = - *uexp [- 2 6  ] 

where u = so, and 
Xa 
Y 

xg = /?In(-) 

This justifies the name log-normal distribution for px(x), since the logarithm of its 
variable is Rorma!!y distributed. 

6. According to  what we have seen in the previous exercise, let v an n-dimensional 
normally distributed rev., defined as v N N ( p v ,  P). The vector with components wj 
defined as wj = exp(uj) for j = 1, - e . ,  n is said to be distributed log-normally and it 
is represented by w N .CN(p,, R) where pw is its mean and R its covariance. Show 
that 

€{wj} = exp E{vj} + -Pjj , [ 2 I 1  
and 

Rjk = €{Wj}&{Wk}(ePJk - 1). 

(Hint: Utilize the concept of characteristic function.) 

7 .  Computer Assignment: (Based on Tarantola [126]) Consider the experiment of mea- 
suring (estimating) the value of a constant quantity corrupted by “noise”. To simulate 
this situation, let us use Matlab, to generate 101 measurements of the random variable 
y as follows: 

Enter: I y = 21 + rand(l01,l) 1; the intrinsic Matlab function rand generates a uni- 

Enter: mh to generate an array with 31 points in the neighborhood of 21 

formly distributed r.v. in the interval (0 , l )  

Enter: I hist(y,x) 1; this will show you a histogram corresponding to this experiment 

Now using the Matlab functions median, mean, max and min, calculate the median, 
mean and mid-range values for the experiment you have just  performed. What did 
you get? Three distinct values! Can you tell which of these are the closest value to  
the true value? 

8. Computer Assignment: Ok, you probably still can’t answer the question above. So 
here is the real assignment: 
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(a) Construct a Matlab function that repeats the experiment of the previous exercise 
20 times. for the given value of the scalar under noise. For each successive 
experiment, increase the number of samples used by 100, calculating and storing 
the values their corresponding median, mean, and mid-range. At the end of the 
20 experiments, plot the values obtained for the median, mean and mid-range 
in each experiment. Can you guess now which one of these is the best estimate? 

(b) To really confirm your guess. fix the number of samples at 100 and repeat the 
experiments 200 times, collecting the corresponding median, mean and mid- 
range values for each experiment. (It is a good idea, if you do it as another 
Matlab function.) In end of all 200 experiments. plot the histograms for each of 
these three quantities. Which one has the least scatter? Is this compatible with 
your guess from of the previous item? 

(c) Repeat items (a) and (b) for the same constant, but now being disturbed by a 
normally distributed random variable with mean zero and iinity variance. That 
is, replace the Matlab function rand by the function randn. Caution: when 
construction the histogram in this item chose a relatively large interval for the 
outcome counting, e.g.. . This is necessary because the Gaussian 
function has very long 
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Chapter 2 

Stochastic Processes and Random 
Fields 

A topic of intrinsic interest in this course is stochastic partial differential equations (SPDE). 
Although a rigorous treatment of this topic goes beyond our goals, in order to introduce 
the fundamental ideas of the basic theory of SPDE, it is necessary to  discuss the basic 
concepts of stochastic processes and random fields. These two concepts are nothing more 
than extensions of the random variable concept, treated in the previous lecture, for cases 
in which these variables have temporal or spatial dependence, respectively. As a matter of 
fact there is much similarity between the two concepts a t  a fundamental level, with some 
particular nomenclature differences. 

2.1 Definition and Probabilistic Concepts 

In the previous lecture, the symbol z ( w )  referred to  the value of a vector random variable 
x, resulting from the realization of an experiment w.  Stochastic processes are those in which 
the random variable is also a function of time, that is, the random variables are defined on 
the product space R x T ,  where T represents the real time line. In this case, we denote by 
z ( w ,  t )  the result of a stochastic process x(t). In what follows, we utilize the most common 
abbreviation of a stochastic process, denoting the stochastic variables as z( t ) ,  where w 
will be implicit in the notation. Stochastic processes are referred t o  as discrete-time or 
continuous-time depending whether the time domain is discrete or continuous, respectively. 

In stochastic processes, an event B in the probability space is denoted by 

B = {w E R :  x(w,t) 5 z}. (2.1) 

The distribution function for a discrete-time process with N random n-vectors ~ ( t l ) ,  . a ,  x ( t ~ ) ,  
is defined as: 
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with probability density function (if it exits): 

where we recall that P / d z  = dn/dxl  - a  -axn. Consequently, we can write 

In case of a continuous-time process, the probability distribution and probability density 
functions are defined for all times t ,  and can be symbolically written as 

F x ( x , t )  z P({w E R : x ( w , t )  5 z}) (2.5a) 

(2.5b) 

respectively. 

The concepts of mean, variance and correlation introduced in the previous lecture can be 
extended directly to  the case of stochastic processes. Therefore, we define concisely these 
quantities for this case: 

P c c  
e Mean vector: 

e Stationary mean value vector: defined when the mean is independent of time, that is 

For the case in which the stationary mean value coincides with the ensemble mean p,  
the process is called ergodic in the mean. 

e Mean for discrete-time processes: 

1 K 

where T is the sampling period. 

0 Quadratic mean value matrix: 

03 

rX(t)  = &{x( t )x ( t )T}  = 1 --oo z z T p X ( t ) ( x )  d z .  (2.9) 

We can still define the stationary quadratic mean value based on the definition of 
stationary mean value, as we can define the stationary quadratic mean value for a 
discretetime process utilizing the corresponding definition given above. 
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Auto-correlation matrix: 
rx(t, T )  = w t ) x T ( a  , 

or explicitly written, 

(2.10) 

(2.11) 

where the word auto refers to the stochastic process x ( t ) .  

Cross-correlation matrix: 

r x y  ( t ,  T )  = f { X ( t ) Y T ( T ) )  ' (2.12) 

where the word cross refers to the two stochastic processes x( t )  and y ( t ) .  

Auto-covariance matrix of a stochastic process: 

C X ( t , d  = c o v { x ( t ) , x ( T ) )  = W ( t )  - PX(t)l[X(T) - Px(T)lT> ? (2.13) 

where the designation auto refers to the stochastic process in question, in this case, 
only x ( t ) .  It  is simple to show that 

CX(C 7) = rx(4 T )  - PX(t)P%) (2.14) 

When t = T ,  we define the covariance matrix as: 

P x ( t )  = C x ( t :  t )  7 

which is sometimes referred to as the variance matrix. 

(2.15) 

e Cross-covariance matrix of a stochastic process: 

Cxy( t :  4 3 f { [ x ( t )  - PX(t)l[Y(T) - P,(T)IT> 1 (2.16) 

where the designation cross refers to  the stochastic processes x( t )  and y ( t ) .  We can 
easily show that 

Cxy( t ,  T )  = r x y  ( 4  7 )  - P x  ( t )P ;  (.I (2.17) 

Correlation matrices can be defined analogously to the definitions given in the previous 
lecture. 

2.2 Independent Process 

We say that a stochastic process x( t )  is independent when for all t and T the probability 
density P x ( t ) , x ( T ) ( z ( t ) ,  .:(T)) = px(t)p,(,). In this way, according to  (2.11) it follows that 

(2.18) 
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Therefore, from the definition of auto-covariance matrix it follows that C,(t,r) = 0,  for 
t # T ,  that is, an independent stochastic process is uncorrelated in time. In an entirely 
analogous way, we can show that if two stochastic processes x(t) and y ( t )  are independent, 
they are also uncorrelated, that  is, C x , ( t ,  7) = 0 ,  for any t and T .  As in the case of random 
variables, the contrary of this relation is not necessarily true, that  is, two uncorrelated 
processes are not necessarily independent. 

2.3 Markov Process 

As in stochastic processes in general, a Markov process can be continuous or discrete 
depending on whether the time parameter is continuous or discrete, respectively. A discrete 
stochastic process (Le., stochastic sequence) { ~ ( t k ) } ,  for t k  > t o ,  or a continuous stochastic 
process x(t), for t > to, is said to  be a Markov process if, for all T 5 t ,  

(2.19) 

where = ( T )  = {x(s ) , to  5 .$ 5 r 5 t ) ;  and analogously [ ( T )  = {a(s),tG 5 s 5 r 5 t ) .  
More specifically for the discrete case, a first-order Markov process, also referred to  as a 
Markov-1 process, is one for which 

That is t o  say, a Markov-1 process is one for which the probability density at time t, given 
all states up t o  t ,  in the interval [ t o ,  r ] ,  depends only on the state at the final time, T ,  of the 
interval. This is nothing more than a way of stating the causality principle: the state of a 
process a t  a particular moment in time is sufficient for us  to  determine the future states of 
the process, without us having t o  know its complete history. 

In the discrete case, we can write for the joint probability density 

where we utilize the property (1.77). Assuming that the stochastic process is first-order 
Markov, according to  (2.20) we have that 

and utilizing repeatedly the definition (2.20) we obtain 

Therefore, the joint probability density of a Markov-1 process can be determined from the 
initial marginal probability density p x ( 0 ) [ ~ ( O ) ] ,  and from the probability density px( t ) lx ( s ) [ z ( t )  Iz(s)], 
for t 2 s E  to,^), and t < .r.The quantity px( t )~x( , ) [a : ( t ) )2 ( s ) ]  is known as the transition 
probability density of a Markov process. 
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The concept of Markovian process can be extended to  define Markov processes of different 
orders. For example, a discrete stochastic process for which the probability density at time 
tk depends on the process at times tk-1 and tk-2 can be defined as those for which we have: 

which in this case is called a second-order Markov process, or Markov-2. Analogously, 
we can define Icth-order Markov processes. In those cases considered in this course, the 
definition given in (2.20) for first-order Markov processes is sufficient. 

2.4 Gaussian Process 

A stochastic process in n dimensions { x ( t ) ,  t E T } ,  where T is an arbitrary interval of time: 
is said to  be Gaussian if for any N instants of time t l ,  t2, , tN in T ,  its density function, 
distribution function: or characteristic function, is normal. In other words, the process is 
Gaussian if the vectors x( t1) ;  x( t2) ,  . . - ,  x ( ~ N )  are jointly Gaussian distributed. According 
to  what was seen in the previous lecture we can write the density function of this process 
as : 

where the vector z, of dimension N n  = N x n, is defined as: 

(2.25) 

(2.26) 

the mean vectors p&), of dimension N n  are given by 

for i = 1,2,  -.., N ,  and the covariance P,, of dimension ( N  x n)2  = N n  x N n ,  has elements 
which are the sub-matrices 

for i, j = I, 2,. , N .  In this way, a Gaussian process is completely determined by its mean 
and its autocovariance. A process which is simultaneously Gaussian and Markovian is said 
to  be a Gauss-Markov process. 

2.5 Stationary Process 

A precise definition of the concept of stationary process can be given by returning to  the 
concept of probability. However, for what interests us, it is sufficient to utilize wide-sense 
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stationary processes, which only requires that the first two moments be time-independent. 
In this sense, a stationary process is one for which the mean is independent of time: 

PX(4 = P x  7 (2.29) 

and for which the correlation only depends on the time interval T between events: 

which can be written as: 

r,(r) = rx(t + 7,t) = q x ( t  + 7)xT( t ) } .  (2.31) 

An even weaker concept of stationary process is defined when the covariance is stationary. 
In this case, 

(2.32) 

These concepts apply similarly to  “cross-quantities” , that  is, the cross-correlation and 
cross-covariance 

C x ( T )  = c x ( t  + t) = r x ( t  f r , t )  - P x ( ~  + 7 ) P x  T 

respectively, are stationary. In this case, it is simple t o  show that 

(2.34a) 
(2.34b) 

since stationary covariances and correlations are invariant under a time translation of -7. 

2.6 Wiener-Khintchine Relation 

A definition that  follows from the concept of stationary process introduced above is given by 
the Wiener-Khintchine relation. This relation defines the spectral density of the stationary 
covariance as being the Fourier transform of the covariance. For a continuous stochastic 
process the power spectrum of the  covariance can be written as: 

oc 
e X ( w )  = C x ( r ) e - i W T  d r  , 

and consequently, by the inverse Fourier transform we have that  

(2.35) 

(2.36) 

For discrete stationary processes the discrete Fourier transform defines the corresponding 
power spectrum. 
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2.7 White Noise Process 

The simplest power spectrum that we can think of is the one given by a constant, that is: 
one for which e(u) E Qw(u) = Q w ,  where the stochastic process w is called white noise. 
In this case. the covariance becomes a Dirac delta: 

(2.37) 

Even if this noise is completely non-physical, because it is infinite at the origin, it is of 
great importance in the development of stochastic differential equations. 

2.8 Wiener Process 

A Wiener process, also called Brownian motion, denoted by b( t ) ,  is defined as the integral 
of a stationary, Gaussian white noise process w(t)  with zero mean: 

t 
b(t) = 1 w( t )d t :  

where 
C O V { W ( ~ ) ,  ~ ( 7 ) )  = Q W S ( t  - 7) : 

as we saw above. Some of the properties of this process are listed below: 

(2.38) 

(2.39) 

1. b(t)  is normally distributed. 

2. f { b ( t ) }  = 0 ,  for all t 5 0. 

3. P{b(O) = 0} = 1. 

4. b(t)  has independent and stationary increments: that is, independent of time. We 
a ,  b(t,-l) - b(tn),  where refer to  increments as being the differences b(t1) - b(t2): 

t;+l < ti, with t i  E T .  

5. b(t) is a Markov process. 

Moreover the variance of a Wiener process increases linearly in time: 

t t  
war{b(t)} = f {b ( t )bT( t ) }  = / 0 0  / f{w(t1)wT(t2)} dt1 dt2 

r t  r t  

(2.40) 
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where &e used the following definition of a delta function: 

At f ( s )d( t  - s )  ds =, f ( t )  . (2.41) 

It  is important t o  notice that the difficulty encountered in the description of a Gaussian 
white noise process, the problem of infinite variance, does not exist for the Wiener process. 
That means, the latter is a well-behaved process. 

2.9 Spatial Random Fields 

The literature on random stochastic fields is relatively smaller than  that on stochastic 
processes. Still, there are several treatments, such as those of Vanmarcke [132] and Yaglom 
[140]. A more recent treatment, directed toward earth science applications is the one of 
Christakos [24]. In what follows, we will be as concise as possible, keeping in mind that the 
main purpose of this section is to  introduce the concepts of homogeneity and isotropy for 
random fields. 

The concept of random fields can be introduced similarly t o  the way we introduced stochastic 
processes. In this case, we associate with each random variable XI ,  x2, . - .  , x, the points 
r l , r 2 , - - . , r n  in the space R". A random spatial field can be considered a function of 
events w E R, where R is the sample space introduced in the previous lecture, and also a 
function of the spatial position r E R", that is, x(r) = x(w,r).  When we write x(r)  we 
are simplifying the notation in a manner entirely analogous to  what we did in the previous 
section, when the variable was the time. This concept can be extended t o  several random 
variables depending on space in order t o  motivate the introduction to  vector random spatial 
fields. We denote by x(r) the vector random field which represents the set of random spatial 
fields x1 (r), x2 (r), . - , xm (r), that is, 

(2.42) 

The distribution function of a vector random spatial field is then defined as: 

Fx(x, r) = P({u : x(r) 5 e; r E R"}) . (2.43) 

We emphasize once more that the concept of random fields is an extension of the concept 
of stochastic process. A stochastic process is a random field for which the spatial argument 
r E R", is introduced for n = 1 and r -+ 1" + t so that the random variable becomes x( t ) ,  
as before. 

The distribution function is related to  the  probability density by means of the expression 

and consequently 

(2.44) 

(2.45) 
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The concepts of mean, variance and correlation can be extended directly for the case of 
random spatial fields. Therefore we define concisely these quantities in this case: 

e Mean value of a random field 

(2.46) 

for two spatial points ri and rj, where we made an analogy with what we saw in 
stochastic processes; auto refers to  the random field in question, in this case x ( r ) .  
Then, we have that 

When ri = rj, we have the variance matrix which describes the  local behavior of the 
random field. 

In order t o  simplify and more easily demonstrate the notation, consider the case of a scalar 
random field x(r). The mean introduced above becomes a scalar quantity p(r), that is, a 
function of “one” spatial variable r E R”. The covariance becomes a function (no longer a 
matrix) of “two” spatial variables ri, r3. The variance is a function given by 

for r = ri. We can still introduce the spatial correlation 
points as: 

A scalar random spatial field is said to be uncorrelated when 

(2.49) 

function px(ri, rj) between two 

og(r) , for ri = rj = r 
Cx(r;, ‘ j )  = otherwise 

(2.50) 

(2.51) 

and in fact! such a random field is said to  be a white field (analogously to  the white process 
seen previously). 

Basically all the concepts defined for random processes can be generalized for spatial random 
fields: 

Markovian process + Markovian field 

Gaussian process + Gaussian field 

white process + white field 
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as for the concepts of characteristic function, conditional probability function, conditional 
mean, conditional covariance, etc. 

A very important generalization is that of the concept of stationarity of a stochastic process, 
which for spatial random fields translates into the concept of homogeneity. In  the wide sense, 
a spatial random field is said to  be homogeneous when its mean value is independent of 
the spatial variable, and its covariance depends only on the distance between two points in  
space. For the scalar case, this can be written as: 

PX(4  = P 
Cx(r;, rj) = C x ( r  = r; - rj) 

(2.52a) 
(2.52 b) 

Another fundamental concept is that of the isotropic spatial random field, which is defined 
as a field for which 

CX(ri!rj)  = Cx( r  = Iri - rjl) (2.53) 

is satisfied. That is, a spatial random field is said to  be isotropic when its covariance depends 
only on the magnitude of the distance between two points in space. 

I t  is possible to  show (e.g., Christakos [24]) that for a homogeneous random field, not 
necessarily isotropic, we can write the covariance function as 

Cx(r)  = kn exp(iwTr) &(w) dw (2.54) 

where Cx(w) is the spectral density function that, by the inverse Fourier transform, can be 
written as: 

Cx(w> = kn exp(--iwTr) ~ x ( r )  d r  (2.55) 

This result can be generalized for the case of vector random fields. Notice that for real 
random fields, the covariance and spectral density can in fact be expressed in terms of 
Fourier cosine integrals. 

1 

Cx(r) = An cos(wTr) &(w) dw (2.56a) 

(2.56 b) 

The importance of these results lies in the fact that they provide a relatively simple criterion 
to  determine whether a continuous and symmetric function in R" can be a covariance 
function. In fact, the necessary and sufficient condition for a continuous function Cx(r;, rj) 
in R" to be a covariance function is that  it be a positivesemidefinite function, that  is, 

(2.57) 

for any function f(r) .  This criterion is generally very difficult t o  verify, even for homoge- 
neous random fields. However, utilizing the spectral representation above, Bochner's [15] 
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theorem says that the criterion for a continiious and symmetric function in R” to  be a 
covariance fiinction is that its spectral function be positive-semidefinite 

&(w) 2 0 

for w E R”. 

(2.58) 

A relevant result that appears in  atmospheric data assimilation concerns the isotropic case 
with n = 2. that is, in  R2. In this case, Cx(r)  = C X ( r ) ,  where r = (r( .  Introducing 
polar coordinates: r = (z,y) = (rcosO.rsin6) and w = ( w c o s q , m s i n p ) ;  and recalling 
the change of variables in integrals means that we should calculate the determinant of the 
Jacobian matrix that corresponds to  the transformation, that is 

cos6 -rsin 6 az 83: 
[ .Jac(r ,d)[z  1 

Z7 1 = 1 2 %  sin6 rcos6 (2.59) 

where the notation 1.1 is used for the determinant. In th i s  way. using the fact that the 
integral over R2 for any  function f ( z ,  y) is transformed into an integral over the circle C a 

f ( z , y ) d z d y  = s,”s,’” f ( r c o s 8 , r s i n 6 ) r d r d 6  (2.60) Lrn La 
(e.g.. Apostol [4], pp. 479 485), the  integral in  (2.56b) becomes 

where the last eqiiality is obtained by treating the inner product explicitly: 

w T r  = r w  cos 6 cos q + rw sin 6 sin q 
= rwcos(e - q) (2.62) 

where w = IwI. Now performing the transformation, 6 + 6 + 9 + n/2, we have that 
cos(@ - q) + - sin 6, and therefore the integral of the expression above is independent of 
q. This means that the result of the int,egral is also independent of p, as should be the case 
for isotropic covariances. Introducing the Ressel function of order zero: 

1 2 n  
.Jo(z) = G L  cos(zsin6) d6 

(e.g., Arfkcn [5], pp. 579-580): we have that in two dimensions 

Utilizing the orthogonalit,y of the Ressel function of order zero: 

1 oc L rJo(wr),Jo(w’r) dr = -6(w - w’) 
W 

(2.63) 

(2.64) 

(2.65) 
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(e.g., Arfken [5 ] ,  p. 594), we obtain for t h e  isotropic covariance function in two dimensions 
the formula: 

Cx(.) = 2 7 r A  Jo(wr)Cx(w)w dw (2.66) 
Dc: 

It  is interesting to  mention that the concept of ergodicity can also be extended to spatial 
random fields. In a n  entirely analogous way t o  what can be done for stochastic processes, 
a spatial random field is said to  be ergodic if its spatial mean and covariance coincide with 
its ensemble mean and covariance, respectively. 

EXERCISES 

1. (Problem 4.3, Meditch [103]) Assuming that  three scalar stochastic process {x(t), t E 
T } ,  {y(t) , t  E T }  and { z ( t ) , t  E T }  are pairwise independent, show that they are not 
necessarily triplewise (simultaneously) independent. 

2. Calculate the power spectrum for stationary processes having the following autocor- 
relation functions: 

(a) Gaussian pulse: I'(T) = a2e-T2/T2 

(b) Damped cosine wave: T(T) = 02e-p1T1 COSWOT 

(c) Triangular pulse: 
171 7 for 171 F 1 

otherwise 

3. (Problem 2.17, Brown [19]) The stationary process s ( t )  has mean p = const. and an 
autocorrelation function of the form 

Another process y(t) is related t o  s( t )  by the deterministic equation 

where a and b are known constants. 

(a) What is the auto-correlation function for g( t )?  

(b) What is the cross-correlation function rzy ( T ) ?  

4. (Problem 2.20, Brown [19]) Two random processes are defined by 

z ( t )  = a sin(wt+d) 
y(t) = b sin(& + 0) 

where I3 is a random variable with uniform distribution between 0 and 27r, and w is a 
known constant. The coefficients a and b are both normal random variables N(0,  a2}  
and are correlated with a correlation coefficient p. What is the cross-correlation 
function r z y ( T ) ?  (Assume a and b are independent of 0.) 
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5 .  Show that the following are admissible candidates for a covariance function: 

(a) Cx(r) = ab(r ) ,  for a > 0 and r E R" 
(b) Cx(z,y) = Cx(r = 1z - 9)) = r exp( - r  2 ), for z,y E R'. (Hint: In this case, 

t h e  proof can be obtained by either showing that (2.57) is true, or showing that 
(2.58) is satisfied. Use (2.58) and expand exp(2zy) in Taylor series.) 

6. Show that in  R3 the isotropic spectral density function can be expressed as 

and that consequently the corresponding covariance function is given by 

7. (Problem 7.14, Maybeck [ lol l )  In Monte Carlo analyses and other type of system sim- 
ulations (e.g., non-identical twin experiments), it is often desired to generate samples 
of a discrete-time white Gaussian noise vector process, described by mean zero and. 
covariance 

& { W k W l )  = Q k  

with Qk nondiagonal. Independent scalar white Gaussian noises can be simulated 
readily through use of pseudorandom codes (as we have sccn in our first computer 
assignment), but the question remains, how does one properly provide for cross- 
covariances of the scalar noises? 

(a) Let V k  be a vector process composed of independent scalar white Gaussian noises 
of zero mean and unit variance: 

& { l ] g , k }  = 0 & { v : , k }  = 1 for k = 1.2, 

whcre v J , k  is the j - t h  component of V k .  at  time t k .  Show that 

properly models the desired characteristics. The matrix L k  above corresponds 
to  the Cholpsky lower triangular square root of Q k ,  that is, Q k  = L k L l .  Notice, 
that if the Cholesky upper triangular square root had been used instead, the 
corresponding expression for generating W k  would be 

whew, in t h i s  case, Q k  = u k u z .  

(b) If U k  and D k  are the u D factors of Q k ,  that is, if Q k  = U k D k U z :  where u k  

are upper triangular and unitary matrices and D k  are diagonal matrices, show 
that, 

w k  = U k u k  for dl k 
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also provides the desired model if U k  is a vector process composed of independent 
scalar white Gaussian noises of mean zero and variance: 

where U j , k  is t h e  j-th component of U k ,  at  time tk ,  and d j , j ; k  is the (j, j) element 
of Dk,  at time tk (i.e., the j - t h  element along its diagonal). 

8 .  Computer Assignment: We want to  use the results of the previous problem t o  perform 
Monte Carlo experiments for a given correlation and/or covariance structure. As a 
preparation for that, in this problem we are going to  create a Mat,lab fiinction that 
generates a homogeneous correlation on a grid defined over R1 and examine some of 
its properties. Let us  start by consider the interval ( -Lz ,  L,], and let us divide it in  
a uniform grid of J points. Consider also the homogeneous and isotropic, Gaussian 
correlation function in R’ x R’,  that is, 

Q ( x ,  y )  = Q ( r  = Iz - y l )  = exp(--,(x 1 - Y ) 2 / L i )  
L 

where r = Ix - yI is the distance between any two points in  the domain, and Ld is the 
(de)correlation length. Therefore t h e  points in the discrete domain can be defined as 

x j  = j A x  

where Ax = 2L, /J ,  for j E { - J / 2  f 1, J / 2 } ,  and the elements of the homogeneous, 
isotropic correlation matrix Q are given by 

(a) Construct a Matlab function that returns the covariance matrix Q, given the 
half-length of the domain L,, the number of grid points J ,  and the (de)correlation 
length Ld. For (L,, Ld, J )  = (1,0.2,32),  compute Q using this  function. Make a 
contour plot of the correlation array. (Note: A real convenient way of generating 
this matrix in Matlab is using the intrinsic function -1.) 

(b) For the parameters of the previous item, plot the correlation function at  the 
following two specific locations: x 3  E (0 ,  Lz} .  

(c) Is the Q obtained above a n  acceptable correlation matrix? Explain it. (Hint: 
Check its eigenvalues.) 

(d) From the figures constructed in the previous items, we see that the correlation 
decreases very quickly toward values that are nearly zero. (You can actually 
print out the values in Q to check it further). It could be computationally 
advantageous, particularly to  reduce storage requirements, to approximate this 
correlation “function” (matrix) by one that neglects correlation values beyond 
a certain cut-off length L,. In  this way, only the elements of t h e  matrix cor- 
responding t o  Irl < L,  would need to  be stored. Without worrying about the 
storages savings, modify the function of item (a), to  construct a new matrix Q c ,  

by replacing the values of Q for which Ir! > L,  by zero. Using the same param- 
eters as in item (a), and a cut-off value of L, = 3Ld, make a contour plot of the 
resulting correlation structure. Also, repeat item (b). 
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(e) A visual comparison of the plots in items (a) and (b) with those of item (d) seem 
to indicate that our approximation is fairly reasonable. Is the correlation of the 
prrvious item, an acceptable correlation matrix? 

9. Cornpilfer Assignment: The result obtained in the last item of the previous exercise 
makes us wonder what is the correct way of constructing a correlation field that has the 
structure that we want, but is zero beyond a certain correlation length. Thc procedure 
to  generate what are called compact-support correlation functions is through the use 
of convolution of functions. (Note: see Gaspari and Cohn (1996) for the details on 
constructing these correlation functions in R2 and R3, that are of primary importance 
in  modeling covariances for data assimilation). Another way of looking at  convolution 
of functions is to  think on the Hadamard product for the case of matrices. Without 
getting into the mathematical details, this problem has the intention to  guide you 
though the steps of building an actual correlation matrix for the function of the 
previous problem. Consider then the compact-support triangiilar correlation function 
discussed earlier in  the text: 

Then perform the following tasks: 

(a) Repeat items (a)-(c) of the previous exercise, but now for the compact-support 
function T ( r )  = T(lz - yl). (Note: The matrix T has elements Tz3 = T ( z , ,  y3).) 

(b) Construct a matrix Q as the Hadamard product of the matrix Q ,  of item (a) 
i n  the previous exercise, and T from the previous item, corresponding to  the 
function T ( r ) .  That is, let Q be given by 

Q Q o T = [Q;j'j?;j] 

(Note: Matlab does the Hadamard product trivially). Make a contour plot Q .  
and repeat itern (c) of the previous exercise. 

(c) To get yet another visual representation of wha t  the correlations from Q .  T and 
Q are like. plot the correlation functions obtained from these three matrices at 
point z = 0. (Please, have all three curves on the same frame). 

10. Computer Assignment: Using the Matlab function created in item (a) of Exercise 8 
(i.e., without a cut-off length), let us  apply the results of Exercise 7 to  understand 
better what correlated noise actually is. 

(a) Create a Matlab function that performs a Monte Carlo experiment given the 
number of samples. We want the output of th i s  function to  be the sampled 
correlation matrix, obtained from a weighted sum of outer products of the vectors 
wk of Exercise 7. To obtain the Cholesky decomposition of the correlation matrix 
Q of Exercise 8, use the Matlab function ml. Make contour plots for the three 
sampled correlation matrices obtained by using 100, 1000, 10000 samples. 

(b) Now using the identity matrix, in the 32-dimensional space of Exercise 8, perform 
a Monte Carlo run, with 1000 samples, assuming th is  identity matrix is the 
correlation matrix of interest. Make a contour plot of the resulting sampled 
correlation matrix. Compare this result with those obtained in the previous 
item. In particular, explain the meaning of using an identity correlation matrix. 
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Chapter 3 

Stochastic Differential Equations 

In this lecture we will present a simple discussion of systems governed by stochastic dif- 
ferential equations. To maintain the most pleasant possible notation, we will not make 
explicit distinction between the random variable u and its corresponding value u. the first 
being utilized to represent the stochastic process of interest. This notation will be utilized 
through the end of this course. 

3.1 Linear Dynamical Systems 

Linear transformations of a n  r.v. consist of one of the most fundamental transformations 
in stochmtic processes. A linear transformation of special intrrest is found in dynamical 
systems. In this case. a certain initial condition evolves according to  the dynamics of a linear 
operator. In case the distribution function of the r.v.’s in question is a Gaussian, a linear 
transformation of this variable produces an r.v. with the Gaussian distribution (see Exercise 
1.4). This occurs in problems in linear dynamical systems: given an initial condition with 
the Gaussian distribution, the final result will also be Gaussian distributed. In th is  lecture, 
we concentrate in calculating mean and (co)variances of stochastic processes. since in the 
normally distributed case these quantities define the process completely. Higher moments 
are necessary when either the process is not Gaussian or the process is nonlinear. The 
treatment in this lecture is general and independent of the distribution under consideration, 
meaning that any moments can in principle be calculated according t o  the procedures given 
below. Both time-continuous and time-discrete stochastic processes are discussed here. A 
brief introduction to the case of systems governed by stochastic random fields is discussed 
in  the end of this lecture. 
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3.1.1 Continuous Processes 

Consider the following linear dynamics of first order in time for the random n-vector u: 

u = -  du(t) = F(t)u(t) + G(t)w(t), 
dt 

where the mean and the (co)variance of the initial state u(t0) and of the m-vector o noise 
w(t) are given by: 

P,(t) = f { W ( t ) l  PW(tl,t2) = C 4 W ( t l ) , W ( t 2 ) 1  ( 3 4  
P,(tO) = +(to)) P”(t0) = ua+(to)} (3-3) 

where the matrices P, and P, are of dimension m x m and n x n, respectively. Moreover, 
we consider the process w(t) to  be uncorrelated with the initial process u(to), that is, 

co+(to), w(t)) = 0 , (3.4) 

for t 2 t o .  The problem we want t o  approach is to  find the mean p,(t) and the covariance 
Pu(t1,t2), for any t , t l , t 2  > t o .  

The general solution of (3.1) is given by 

t 
~ ( t )  = *( t ,  to)u(to) + Q(t ,  ~ ) G ( T ) w ( T )  d r ,  (3.5) Lo 

where *( t ,  t o )  is the transition matrix of the system, the solution of the homogeneous linear 
differential equation: 

= F(t)*(t, t o )  , dQ(t ,  t o )  

* ( t o ,  t o )  = I ,  

d t  $ @ , t o )  = 

with initial condition 

where I is the identity matrix. 
(3.7) 

We can determine the mean of u(t) by applying the ensemble mean operator to  (3.5): 

t 

t o  
P d t )  = E{u(t)) = E { * ( &  to)u(to)} + E {  j *(t ,  .r)G(r)w(r) d.} 

= *( t ,  to)Pu(to)  + L; *(t ,  r)G(+,(r) dr (3.8) 

where the last equality is obtained by exchanging the ensemble mean operator with the 
integration operator, since they act on different variables. In this  way, the mean of the 
process u(t) satisfies an expression analogous to  the solution of the equation (3,1), except 
that the processes u and w are substituted by their respective means. 

The integration in (3.8) is complicated in the majority of cases, therefore it is convenient 
that we determine an auxiliary expression t o  obtain the mean of ~ ( t ) .  This can be done by 
applying the ensemble mean operator directly t o  the equation (3.1). In this case we obtain: 



subjcct to  the initial condition pu(to). The solution of th i s  equation is obviously given by 
(3.8); however, compiitationally the equation above has a much simpler solution. 

Using the relationships above and the solution (3.5) we can derivc the expression for the 
covariance. that is, 

or also. 
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Utilizing the condition that w(t) and u(t0) are uncorrelated (3.4), the expression above can 
be written as: 

(3.15) 

for t l ,  t 2  > to.This expression is of little utility in this form. Therefore, let u s  suppose that 
the process w(t) is a white noise, which means that the covariance PW(q,  72) in this case 
is given by: 

l'w(71, 72)  1 Q ( T I ) ~ ( ~ I  - TZ) 1 (3.16) 

where 6(r) is the symmetric Dirac delta (distribution) function, defined by: 

( 0 .  i f t < a o r t > b  

(3.17) 

Supposing, for the moment, that tl < t 2 ,  and using the fact that w(t) is a white noise, the 
expression (3.15) can be decomposed as: 

d ~ z 9 ( t i , ~ i ) G ( ~ i ) P w ( ~ l ,  7 2 ) G T ( 7 2 ) Q T ( t 2 ,  72) = 1: drll: 

d ~ i q ( t 1 ,  ri)G(r~)Q(r1)GT(71)qT(t2, 71) (3.18) 

where the last equality is obtained by using the definition of the symmetric Dirac function 
(3.17): the second integral within the brackets gives n o  contribution. A n  equivalent argu- 
ment applies when we take tl > t2 ,  however, for this case the integration over the interval 
[ to ,  tl should be carried over first. 
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Substituting this result in  (3.15) we have that 

Pll(t1, t2) = * ( ~ l , ~ o ) ~ u ( ~ o ) * T ( ~ 2 : ~ O ~  

which is a much simpler expression. The equation for the variance Pu(t) can be found by 
letting tl = t 2  = t :  

P"(t) = *(4 to)Pll(to)*T(t, t o )  
t 

+ io *( t ,  .)G(.)Q(.)GT(~)@(t, r )  . (3.20) 

A n  analogous comment to  the one made for the solution of the equation for the mean is 
applicable for the variance and covariance expressions, that is, the integrations in (3.19) 
and (3.20) are very complicated and it is worthwhile to  search for simpler expressions to  
work with.  Direct differentiation of the solution (3.20) leads to  a differential equation for 
the variance (see Exercise 3.1): 

Pu(t) = F(t)Pu(t) + Pu(t)FT(t) + G(t)Q(t)GT(t) , (3.21) 

which can be obtained in a n  even simpler way by means of applying the definition of variance 
t o  the quantity P"(t) .  The equation (3.21) is known as the 1,yapunov equation. Given the 
initial condition of the variance P,(to), the Lyapunov equation drtermines the dynamic 
evolution of the variance for any t > to .  Notice that the Lyapunov equation does not 
require knowledge of the transition matrix *. 
It is possible to  show that for the case of white noise the covariance P, ( t l , t~ )  can be 
obtained by means of the expressions: 

(3.22) 

(see Exercise 3.2). 

3.1.2 Discrete Processes 

Consider now the first-order discrete n-dimensional dynamical system: 

u(lc + 1) = q l c  + 1, ~ c ) ~ ( l c )  + r(lc)w(lc) . (3.23) 

where the notation u(k) stands for ~ ( t k ) ,  T = t k + l  - t k  is the sampling interval. and the 
noise w(k) is a vector of dimension m. 

Analogously to the continuous case, we define the mean and the covariance of the discrete 
processes u(0) and w(k) as: 

Pw(k) = f{w(k)l  PW(W = ...{W(k),W(j)) (3.24) 
P,(O) = r { U ( o > }  PU(0) = var{u(O)I (3.25) 
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also, the processes u(0) and w(k) are considered t o  be uncorrelated, 

cov{u(O), w(IC)} = 0 ,  (3.26) 

for all IC 2 0, and the matrices Pw and P, are m x m and n x n dimensional, respectively. 

To obtain the general solution of (3.23) let us  write its corresponding expression for u(1) 
and u(2),  that is, 

up) = *(i,o)u(o) + r(o)w(o) (3.27) 

and 
4 2 )  = ~ 2 ,  + r ( i )w( i )  

respectively. Substituting the first equation into the second we get 

(3.28) 

where we noticed that \k(2,0) = \k(2,1)+(1,0) ,  and *(2,2)  = I. Continuing this proce- 
dure, we can show that the solution of the  equation (3.23) can be written as 

for k > 0, 
*(k, 0) = Q ( k ,  k - l)*(k - 1, IC - 2) . . .*(2,1)*(1,0) (3.31) 

and \ k ( k ,  IC) = I for all k .  

The expression for the mean is calculated by applying the ensemble mean operator to  the 
solution written above, that  is, 

since the ensemble mean operator acts only on the stochastic quantities u(0) and w(j) .  
An alternative, recursive equation for the  mean can be obtained by applying the ensemble 
mean operator directly to  (3.23), that is, 

Before we determine the covariance Pu(k,j) = cow{u(k), u( j )} ,  it is useful to  recognize that 
a general cross-covariance Puv(k, j )  = cov{u(k), v(j)}, for arbitrary n-vectors u(k),  and 
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m-vectors v(j), and arbitrary non-stochastic n x n matrices A(k’), and r n  x m matrices 
B(j’), we can write 

cov{A(k’)u(k), v(j)} = A(k’)PUV(kj) (3.34a) 
cov{u(k), B(j?v(j)} = Pl lv (k ,W(j ’ )  (3.34b) 

COW { A (IC’) u ( I C ) ,  B ( j ’ )  v ( j )  } = A (IC’) P,, ( I C ,  j )  B~ ( j ’ )  (3.34c) 

which can be demonstrated in a n  analogous way as done for the continuous-time case. 

IJsing the relations above and (3.30, the covariance P,(k, j )  can be calculated by 

P,(IC,j) =: cou{u(IC)u(j)} 

= * ( k ,  o)Pl*(o)*T(i 0) 
j -  1 

+ * ( ~ c , o ) C C O W { U ( O ) , W ( P ) } ~ ~ ( ~ ) * ~ ( ~ , P +  1) 
I =O 

k-  1 

+ * ( k ,  i + i)r(i)Cov{w(i), u(o)}qT(j,  0) 
i=O 

where PW(k,j) = cov{w(k), w(j)}. In  this way, the assumption of decorrelation (3.26) 
leads u s  to write 

P,(k,j)  = *(k, o)Pll(o)*T(j, 0) 

which is the general expression for the covariance of the discrete process (3.23). 

As for the continuous case, we can obtain a simpler expression for the covariance if we 
consider the sequence {w(k)} to be white. Therefore, for the case in which 

p w ( k , j )  = Q k h k , j  : (3.37) 

where h k , j  is the Kronecker delta, the equation for the covariance is reduced to: 

PIl(k7.i) = * ( I C ,  O)P,(o)*T(j, 0) 
rnin(j-1 , k - I )  

+ *(IC, i + i)r(i)QirT(i)**(j, i + 1) .  (3.38) 
i=O 

A recursive expression for the variance P,(k+1) can be obtained directly from the definition 
of variance and from (3.23). That is, by forming the outer product of (3.23) with itself and 
by applying the ensemble mean operator it follows that 
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Since u(k) depends only on w(j), for j < I C ,  the second and third terms of the expression 
above vanish, so that the variance can be written as 

p,(k + 1) = *(k + 1, ~ ) P , ( I c ) * ~ ( ~  + 1, I C )  + r(k)PW(k)rT(k) , (3.40) 

which the corresponding discrete Lyapunov equation. 

For a white noise sequence {w(k)} we have Pw(k) = Pw(k, k) = Q k ,  and also 

(3.41) 

which can be verified by substitution of (3.40) into (3.38). That is, consider the case k 2 j ,  
then: 

PU(k,j) = w, O)P,(0)QT(j, 0) 
j - 1  

i=O 
+ 8 ( k ,  i +  1) [Pu(i + 1) 

-*(i + 1, i)P,(Z)@(i + 1, i)] @(j ,  i + 1) 

= v, o)Pu(O)Wj, 0) 
j - 1  

+ Q ( k ,  i + l)P"(Z + l ) \ k T ( j ,  i + 1) 
i=O 
i - 1  

i=O 

(3.42) 

where, the two sums in the last equality cancel, and we used q ( j , j )  = I to obtain the 
desired result. The case k 5 j can be obtained in a n  analogous manner. 

3.1.3 Relation between the Continuous and Discrete Cases 

A fundamental relation between continuous white noise and discrete white noise is that,  as 
the sample of the discrete stochastic process becomes dense, the covariance of the discrete 
white process: 

cov{w(kT), w(jT)) = Q k h k , j  (3.43) 

cow{w(t), ~ ( 7 ) )  = lim cow(w(kT), w(jT)} = Q ( t ) h ( t  - 7) (3.44) 

becomes the covariance of the continuous process: 

k , j + o o  
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where the limit is also taken for kT + t ,  j T  -+ T .  and also for T --+ 0. The variances in the 
expressions above are related by 

Q ( t  = kT)  = T Q k  (3.45) 

where some care should be taken with the notation used here: in spite of the fact that  the 
variance matrices for the discrete and continuous processes above are represented by the 
same letter, they arc in fact distinct matrices; the distinction is made by using subscripts 
in the discrete case Qk,  in contrast to  the explicit functional time dependence Q ( t )  for the 
continuous caw. 

The transition matrix of the continuous system can be written formally as 
t w, t o )  = 'XP{/ F ( s )  d.4 (3.46) 

t o  

so that .  for t = (k + l ) T  and to  = kT, we can write 
(kS1)T 

\ k ( ( k +  l ) T , k T )  = I + /  F ( s ) d s  
kT 

x I + F ( k T ) T ,  (3.47) 

where we made a gross approximation of the integral - which becomes reasonable as the 
sample becomes dense. 

Substituting (3.45) and (3.47) in  (3.40) we have that 

P , ( ( k  + 1)T) = [I + T F ( k T ) ] P , ( k T ) [ I  + TF(kT)IT + T G ( k T ) Q ( k T ) G T ( k T ) ,  (3.48) 

where we made the correspondence: G ( t  = kT) = I'(kT)/T. The expression above can be 
also written as 

p , , ( ( k  + 1 ) ~ )  = P&T) + T F ( C T ) P , ( L T )  + T P , ( ~ T ) F ~ ( ~ T )  
+ T G ( ~ T ) Q ( ~ T ) G ~ ( ~ T )  + o ( T ~ ) ,  (3.49) 

so that in  the limit T + 0, and kT + t ,  we have 

= F ( t ) P " ( t )  + P u ( t ) F T ( t )  + G ( t ) Q ( t ) G T ( t )  , (3.50) 

where we retained only the terms of lower order in T .  This means that the limit for the 
discrete variance evolution equation as the sample time becomes dense is given by the 
Lyapunov equation. 

3.2 Nonlinear Dynamical Systems 

3.2.1 Continuous Processes 

Consider now the system of nonlinear differential equations for the random n-vector u ( t ) ,  

- -  du(t) - f[u(t),t] + G [ u ( t ) , t ] w ( t )  , 
dt 

(3.51) 
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where w(t) is a random m-vector white in time, with mean zero and (co)variance Q ( t ) ,  
that is, 

L{w(t)} = 0 

C O U { W ( ~ ) ,  w(T)} = Q(t )b ( t  - 7) 

(3.52a) 
(3.52 b) 

moreover, we also assume w(t) t o  be Gaussian. The function G[u(t), t]  is a n  n x m matrix. 

Formally, the solution of the equation above can be written in the form 
t t 

UP) = u(to) + lo f[u(s), 4 d s  + lo G[u(s), SI d b ( 4  1 (3.53) 

where {b(t)}  is the Wiener process defined in Section 2.8, since we assumed {w(t)} t o  be 
white and Gaussian. The first integral in the solution (3.53) is an ordinary integral (in the 
sense of Riemann); however, the second integral is questionable, since it involves increments 
d b  of a function which is not necessarily finite. This last integration can be accomplished 
by employing possible generalizations of the concept of Lebesgue-Stieltjes integrals to the 
stochastic realm. One of these generalizations is due to  Ito, and it defines what is called 
stochastic integral calculus. 

The treatment of stochastic integrals is beyond the scope of what we intend t o  cover in this 
course. It is worth saying that  for the case in which the matrix function G is independent of 
the process u( t ) ,  there is no difference between the stochastic integral calculus and ordinary 
calculus, in reference to  solving the last integral in (3.53). Therefore, from th is  point on let 
u s  consider a simplified version of (3.51) given by 

-- d'(t) - f[u(t), t] + G(t)w(t) . 
d t  

(3.54) 

As in the previous sections we are interested in determining the moments of the statistics of 
the process { ~ ( t ) } .  We know that in  the linear case, the assumption of a Gaussian driving 
forcing {w(t)} implies that the process { u ( t ) }  is Gaussian as well, for Gaussian {u(O)}. 
For this  reason we concentrated on deriving equations for the first two moments in the 
previous sections. In the nonlinear case, the Gaussian assumptions on {u(O)} and { ~ ( t ) }  
do not guarantee the process { ~ ( t ) }  to be Gaussian, consequently, even for Gaussian initial 
condition and driving forcing all moments are required in principle to  describe the statistics 
of the process { ~ ( t ) }  completely. However, t o  keep the calculations simple, we are still only 
going to  concentrate in deriving equations for the first two moments of { u ( t ) } .  

The easiest way to  obtain a n  expression for the mean is to  apply the ensemble mean operator 
t o  equation (3.54). Proceeding this way, it follows that 

-- d p u ( t )  - E{f[u(t), t ] }  , 
d t  

(3.55) 

where we used the fact that the process {w(t)} has mean zero. To determine a n  explicit 
expression for the right-hand side of the equation above, we expand the function f about 
the mean flu. In this way, a Taylor expansion up to  the second order yields, 

f[u(t) tl = f[Pu ( t )  7 tl + J-'[Pu ( t )  9 tI(u(t) - Pll ( t )  1 
(3.56) 

1 + ;?J-''[CLU(t),~l (44 - P"(t)> c3 ( 4 t )  - Pll(t>) 
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where 3' is the n x n gradient (Jacobian) matrix o f f  given by 

and F" is the n x n2 Hessian matrix given by 

- - 

. . .  * (3.58) 

Here we are using Vetter's notation [I361 and [I371 for the calculus of matrices (see also 
Brewer [18] for a n  ovcrvicw of matrix calculus). The operation 8 represents the Kronecker 
product for matrices, which for any n x m matrix A and p x q matrix B is defined as 

= [ du, du2 u(t)=P, , ( t )  

(3.59) 

\ a n l ~  an213 * anmB 1 
where aZ3 is the (i. j)-th element of A .  The result A @ B is a matrix of dimension np x mq. 

Using t,his definition, the Kronecker product of a gcncral n-vector v with itself can be 
written as 

(3.60) 

which is a column vector of dimension n2 = n2 x 1. Furthermore, let u s  introduce the 
notation we.(.) to represent the vector (column string) constructed from the columns of a 
general n x m matrix A as 

T 
uec(A) E [aTaT ..-a:] 

a m  

(3.61) 

where a;, for i = 1.. e . ,  m, is the i-th n-dimensional column of the matrix A .  According 
to th is  definition, vec(A) is a vector of dimension n m  = nm x 1. Using th i s  notation. it 
follows tha t  (3.60) we be written as 

v cg v = wec[vv T ] (3.62) 
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Hence, referring back to (3.56), we see that 

It is relatively simple to  verify that the second-order term in (3.56) can be written explicitly 
as 

where, t o  simplify the notation, the subscript u was neglected when we wrote the i-th 
element p; of the mean of u(t), in  the expression above. 

Consequently, the equation for the mean, after application of the ensemble mean operator, 
reduces t o  

1 
-- dPu @I - f[P, ( t )  1 t3 + 5 m P ,  ( t )  , tl vec[Pu(t)l 7 (3.65) 

where we notice that the first-order term in the Taylor expansion of f[u(t), t] is automatically 
canceled. Therefore, the evolution of the mean depends on the variance Pu(t ) .  This is a n  
unpleasant property of nonlinear systems: the evolution of moments of a given order depends 
on moments of higher order. To solve the equation above, it is necessary to  determine an 
expression for Pu(t ) .  As we will observe below, th is  expression also depends on still higher- 
order moments, and so on. Consequently, depending on the nonlinearities in f[u(t) ,t] ,  it 
may be impossible to obtain a closed system of equations that determines completely the 
statistics of the process. In practice, we seek approximations, known as closures, for the 
equations of the desired moments, in order t o  obtain a solvable (closed) system of equations. 

d t  

A simple approximation for the mean equation is to use only up to the first-order term in 
the expansion of the function f[u(t),t]. This leads us t o  the following expression for the 
evolution of the mean: 

dpu(t) = f[p,(t), t] , 
dt 

(3.66) 

which is a closed equation - it is not coupled t o  any other equation. 
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where again WP use the notation (.) to  indicate differentiation with respect t o  time. This 
expression becomes very complicated when taken to  high order in the expansion off  about 
thr mean p,(t). This would lead to a n  equation for the variance depending on moments of 
higher order, thus not being a closed equation, just as it happened for the mean equation. 

For the sake ofsimplicity, let us  consider the second-order approximation (3.56) for f[u(t), t ) ] ,  
as well as the second-order approximation for the wolution of the mean (3.65), so that  we 

Substituting this result into (3.67) yields 

- -  dPu(t) - J - % 4 t ) ,  tlPU(t) + Pu(W%%(t), t] 
d t  

1 
+ f/”[Pu(t)rtl& {[W - PU(t>) @ (u(t) - P,(t ) )  

-vec[Pu(t)ll (u@) - P u ( W }  

+ , c { ( U ( t )  - PUW [(u(t) - PU(t)> @ (u(t) - PU(t)) 

- ~ 4 P l l ( t ) l l T }  F1%,(t) , tl 

1 

+ G(t)E{w(t)uT(t)} + E{u(t)wT(t)}GT(t). (3.69) 

The third and fourth terms of th i s  expression refer to the third-order moments. To determine 
a closed set of evolution equations for the mean and variance, we ignore moments of order 
higher than two. Therefore, it follows that 

+ G(t)&(w(t)uT(t)} + E{u(t)wT(t)}GT(t), (3.70) 

where the terms containing explicitly the ensemble mean can be evaluated by means of the 
formal solution (3.53) corresponding to  the equation (3.54). That  is, by evaluating the 
term &{w(t)uT(t)}, we have: 

E{W(t)UT(t)) = &{W(t)UT(tO)} + st E(W(t)fT[U(S). 4) ds 
t o  

t 
E{w(t)wT(s)}GT(s) ds 

+ lo 
t 

E{w(t)wT(s))GT(s)ds, 
= lo (3.71) 
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where the second equality is obtained by noticing that the first term at  the right of the first 
equality vanishes since u(t0) and w(t) are uncorrelated; and the second term at the right of 
the first equality vanishes when we use the  expansion of f[u(t),t] about the mean, because 
the process w(t) has mean zero and we disregard moments of order higher t h a n  two, that 
is, 

where the last “equality” invoked second order moment closure. 

Therefore, from the definition of the symmetric Dirac delta function in (3.17) we have that 

“ 5;t - s)CJ(s )G*(s )  ds .(A\ T /  \ >  - 
& I W \ L I U  l t l l  - J,, 

= i ~ ( t ) ~ T ( t ) .  (3.73) 
2 

An analogous expression can be obtained for the transposed term so that the variance 
equation, to  first order, becomes: 

-- dPu(t) - F’[p,(t),t]P,(t) + P u ( t ) - T / T [ ~ , ( t ) , t l  + G(t)Q( t )G*( t )  . (3.74) 
dt 

Tt is relevant to  stress that equation (3.74) for the evolution of the variance Pu(t) is of second 
order in the difference [u(t) - p , ( t ) ] ,  Therefore, it is more consistent to  use the second-order 
expression (3.65), instead of the first-order expression in [u(t) - p , ( t ) ] ,  given by (3.66), in 
order to  calculate the evolution of both t h e  mean and the variance. This is a n  important fact 
t h a t  is sometimes ignored in order to reduce the amount of calculation involved involved in 
solving the equation of the mean, since (3.66) requires less computational effort t han  (3.65). 

3.2.2 Discrete Processes 

The nonlinear discrete-time system equivalent t o  the nonlinear continuous-time system 
studied in the previous subsection is represented by the equation 

where the m-dimensional process {w(k)} has the same characteristics as that  defined for 
the linear discrete-time case of Section 3.1.2; ?+6[u(k), k] is a nonlinear n-vector function of 
the n-vector state ~ ( t ) .  In the more general case, the n x m matrix r(k) can be a function 
of u(k); however, for reasons analogous to those stated in the continuous-time case, we only 
consider the simpler situation described by the system above. 
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By proceeding as in the continuous nonlinear caw, it is relatively simple to  show that 
second-order closiire produces the following expressions for the evolution equations of the 
mean and t h e  variance: 

(3.76a) 
1 

P"(k  + 1) = +[P"(W? IC1 + f%,#): kIvec[Pu(k)l 

p U ( k  + 1) = F ' M ~ ) ,  I ~ I P , ( ~ ) F ~ ~ [ P ~ ( ~ ) ,  rc1 + r(rc)Q(rc)rT(rc) (3.7613) 

where 

(3.77a) 

(3.77 b) 

are now the Jacobian and Hessian matrices, respectively, Higher-ordrr equations can also 
be obtained, however, t h i s  gocs beyond the scope of an introductory course. 

3.3 Stochastic Nonlinear Partial Differential Equations 

In this section we are intercsted in the case where the state variable u is a function not 
only of time, but also of space, that is, u = u(r , t ) ,  with r E R". In th i s  case, the 
equations governing the state evolution are partial differential equations describing the 
behavior of a stochastic random field. Our goal here is to indicate concisely how to  derive 
evolution equations for the mean and covariance of the random field. A rigorous treatment of 
stochastic partial differential equations is complicated. especially when boundary conditions 
are included in order t o  define the problem completely. In what follows, we only give a formal 
description of the problem, ignoring the mathematical details. Moreover, we consider only 
the scalar case, so tha t  there is only one random field to  refer to, that is. u = u(r , t ) .  
Morc complete, and mathematically precise descriptions are found in Omatu & Sicnfeld 
[lo91 and in the collection of articles in  Stavroulakis [125]. These treatments are geared 
toward estimation problems for systems governed by partial differential equations, known as 
distributed parameter systems. For our simple treatment, the scalar (or univariate) random 
field u = u(r , t )  is continuous in both space and time. Recall that, since u is random we 
should have in mind that it also depends on a variable w referring to the realizations of 
th i s  field. The variable w is kept implicit in  order t o  maintain the notation as compact as 
possible, and compatible with our previous notation. 

Consider the following system of governing equations: 

(3.78) 

where f [u( r ,  t ) ]  is a scalar differential operator which involves spatial partial derivatives, 
possibly nonlinear in the variable u;  the scalar function w( r ,  t) represents a stochastic forc- 
ing, which we assume to be white in  time with mean pw(r, t )  and covariance Q(r ,  s, t): 

Z{w(r, t ))  = pu,(r, t )  ( 3.79a) 

&{[w(r,t) - ~ w ( r i t ) I [ m ( ~ ! ~ )  - p w ( s , ~ ) ] }  = Q(r!s , t )h( t -  7 )  (3.79 b) 
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with s E R”. When referring to Q as covariance, we have in mind its spatial structure; we 
could refer t o  this quantity as a variance if we had in mind its temporal structure. Also, 
because we are dealing with a scalar stochastic random field, Q is scalar function, and not 
a matrix. 

We assume further that  the processes u(r ,  0) and w( r ,  t )  are uncorrelated, tha t  is, 

L{w(r,t)u(s,O)} = 0 (3.80) 

for all r, s E R”, and all times t 2 0. 

Proceeding as in  the previous section, but now for the univariate case, an equation for the 
evolution of the mean, written here as p ( r , t )  E &{u(r,t)}, can be found by applying the 
ensemble mean operator directly to the governing equation (3.78). Therefore, 

(3.81) 

Expanding f[u(r, t ) ]  in  a Taylor series about i ts  mean p(r, t )  we have 

f[u(r,  t ) ,  tj x fipir, t i ,  ti + .F‘[p(r, i)j(u(r, ti - p ( r ,  t i )  

(3.82) 

which is identical to the expansion (3.56), except for the fact tha t  now the Jacobian 3‘ and 
the Hessian 3” are functions (differential operators), not matrices. These quantities are 
defined in a n  entirely analogous way as to the way we saw in the previous section, that  is, 

1 + f ” W 1  41 (4r ,  t )  - p(r, tH2 

and 

(3.83) 

(3.84) 

Therefore, the equations for the mean and covariance, with second-order closure, are: 

(3.85) 

and 
aP(r’ ” = J-’[LL(r, t)]P(r, s, t )  + 3 ’ [p (s ,  t)]P(rl s , t )  + Q(r, s, t )  (3.86) 

at 
respectively. The equation for the mean involves the variance - covariance P(r, s, t ) ,  for 
s = r. Details in obtaining these equations can be found in Cohn [as]. A simple case, taken 
from this work and tha t  of Mbnard [lo41 is given in exercises. 

EXERCISES 

1. Derive the continuous Lyapunov equation, for the linear system (3.1), in two distinct 
ways: 
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(a) Differentiating the solution (3.20) - use Leibnitz integration rule I .  

(b) Differentiating the definition of variance: 

P ( t )  = W ( t )  - Cl,(t)l[u(t) - Clu(t)lT) 

2. Show that the expressions (3.22) satisfy equation (3.19). 

3. Consider general matrices A, B and C of dimensions n x m, m x p ,  and p x q. 
respectively. Furthermore, notice that the product of two matrices A and B can be 
written as a column operation according to  

(AB)., = Ab, 

where b, is the j - th  column of B, and the notation ( o j )  on the left-hand-side stands 
for the j t h  column of thc product matrix (AB). Representing the ( i , j ) - t h  element 
of B as br, ,  we can write the product of two matrices in the alternative form 

With that in mind, engage in the following proofs: 

(a) Show that: 
vec(ABC) = (CT @ A)vec(B) 

(b) TJsing the previous result, show that 

vec(AB) = (I, 8 A)vec(B) 

where I, is the p x p identity matrix. 

(c) By noticing that for matrices A and A, of dimension n x m, 

vec(A + A) = vec(A) + vec(A) , 

show that the continuous-time Lyapunov equation (3.21) can be written as 

vec(P,) = [F(t) 8 I, + I, 8 F(t)] vec(P,) + [G(t)  8 G(t ) ]  vec(Q) 

(equivalent to Problem 3.1-1 in Lewis [94].) 

ten as 
(d) Analogously, show that the discrete-time Lyapunov equation (3.40) can be writ- 

v e c ( P , ( k  + 1)) = [ Q ( k  + 1, k) @ *(k + 1, k ) ]  vec(P,(k)) 
+ [r(k) 8 r(k) l  vec(Qk) 

(equivalent t o  Problem 2.2-1 in Lewis [94].) 

' LAbnitz integration rule is 
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4. (Maybeck [ lol l ,  Problem 2.15) 

Show that,  for all t o ,  t l ,  and t ,  

by showing that both quantities satisfy the same linear differential equation 
and “initial condition” at time t l .  Thus, the solution of u( t )  = F(t)u(t) with 
u(ta) = uo [Le., *(t ,  to)u(to)] at any time t 2  can be obtained by forming u(t1) = 
*(t,,  to)u(to) and using it t o  generate u(t2) = a(t2, t l)u(tl) .  
Since it can be shown that +(t, t o )  is non-singular, show that the above property 
implies that  

+-l( t , to)  = *( to , t )  

5 .  (Mostly from Maybeck [ lol l ,  Problem 2.18) Given a homogeneous linear differential 
equation u(t) = F(t)u(t), for the n-vector u(t), the associated “adjoint” differential 
equation is the differential equation for the n-vector v(t)  such that the inner product 
of v(t) with ~ ( t )  is constant for all time: 

uT(t)v(t) = const 

(a) Take the derivative of th i s  expression to show that the adjoint equation associated 
with u(t) = F(t)u(t) is 

v(t) = -FT(t)v(t) 

(b) If +,(t,to) is the state transition matrix associated with F(t) and +,(t,to) is 
the state transition matrix associated with [-FT(t)], then  show that 

*“(4 t o )  = * : ( to ,  t )  = [*%l to)]-’ 

To do this, show that [*:(t, to)eu(t, to)] and I satisfy the same differential equa- 
t ion and initial condition. 

(c) Show that,  as a function of its second argument, +,(t, T) must satisfy 

or, in other words, 

(d) If the inner product to be preserved in time is modified t o  be 

uT(t)Ev(t) = const 

where the n x n matrix E is assumed to be invertible and independent of time, 
derive the corresponding modification to the adjoint equation in ( a ) .  

6. (Mostly from Maybeck [loll, Problem 2.17) Let the n x n matrix F be constant. Then 
the evaluation of +(t, to )  = +(t - to) can be obtained by 
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(a) approximating through truncation of series definition of matrix exponential, 
,F(t-to),  

eF(t-tO) = I + F(t - t o )  + -F2(t 1 - to)' + . . . 
2! 

(b) Laplace methods of solving &(t - t o )  = F9( t  - t o ) ,  9(0 )  = I: 

t-to 
+(t  - t o )  = L-'{[sI - F]-'}l 

where 
ment equal to  ( t  - t o ) .  

{ . } ] ( t - t o )  denotes inverse Laplace transform evaluated with time argu- 

(c) Cayley-Hamilton theorem (for F with nonrepeated eigenvalues) 

To solve for the n functions of ( t  - t o ) ,  00. 0 1 . .  e ,  @,-I.  the n eigenvalues of F 
are determined as AI, . . , A,. Then 

must be satisfied for each eigenvalue A;, for i = 1, . . e ,  n, yielding n equations for 
the n unknown 0;'s. 

(d) Sylvester expansion theorem (for F with nonreptated eigenvalues) 

where A; is the i-th eigenvalue of F and F; is given as the following product of 
( n -  1) factors: 

The matrix F, is a projector onto the direction of the i t h  eigenvector of F. 

(e) If the eigendccompostion of F is given by 

F = UDU-' 

where U is the matrix whose columns are the eigenvectors of F, and D is a 
diagonal matrix with the eigenvalues A, of F along the diagonal, that  is, D = 
d iag(A1, .  . . , An), then, the Maclaurin expansion of item (a) above can be used 
to  show that  9 ( t ,  to )  has the same eigenvectors of F with eigenvalues e ' ~ ( ~ - ~ o ) ,  
that is, 

* ( t , t o )  = u U-l 
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Use the five methods2 above to evaluate +(t ,  0) if F is given by 

7. Consider the Lorenz (1960; [99]) system of equations 

X = aYZ 
Y = b X Z  
i = CXY 

where a,  b and c are constants to be specified later. Under certain conditions, Lorenz 
showed that the solution of this system is periodic with predictable period 2K for 
X, ' and  period 411' for Y and 2. The expression for 11' is a function of the initial 
condition [X, Yo 201, and as a consequence, even though the system is deterministic, 
i.e., non-chaotic, the period of oscillation may change considerably due a small change 
in the initial condition. The amplitude of the oscillations may change as well. 

(a) Assuming there is uncertain knowledge of t h e  initial state, we can th ink  on these 
equations as a set of stochastic differential equations. Thus, defining the 3-vector 
u(t) = [ X Y  ZIT and writing the system of equations as 

lip) = f(u) 

derive approximate equations for the mean pu ( t ) ,  

and for the (co)variance P(t), 

to  second order. Notice that in this exercise we are taking Q = 0, (Hint: We 
have already derived these equations for a general stochastic system of ordinary 
differential equations, so this is just  an exercise of calculating the appropriate 
Jacobian and Hessian matrices.) 

(b) Computer Assignment: [Ehrendorfer (1994a,b; [47,48]), and Epstein (1969; [50])] 

2For method ( b )  the following inverse Laplace transforms are useful: 

- a t  c-' {&} = e 

e - a t  - e-bt  1 
c-' { (s + a)(s + b )  } =  b - a  

for t > 0, and (I # b. 
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1. 

11. 

... 
111. 

iv. 

The sollition of a system of ordinary differential equations of the form 

X(t) = f(x,t)  

can be approximated by a fourth-order Runge-Kutta method for x,+1 x 
y(t,+l) according to 

Yn+1 = Y n  
At kl k4 + - ( - + k z + k 3 + - )  3 2  2 

for tn+l = t n  + At, with At being the time step (e.g., Press et al. [115], pp. 
550-554). Write a Matlab function that,  given the initial time t o ,  the final 
time t f ,  the time step At. and the initial condition yo, finds the approximate 
solution of the system of ordinary differential equation for x ( t ) ,  according t o  
t h i s  differencing method3. 
The solution of the Lorenz system for u(t )  above, with a = -0.1, b = 1.6, 
and c = -0.75. and initial condition 

X ( 0 )  
u0 = ( Y(0)  Z(0)  ) = ( E) 

has approximate period of 23.12 time units in  X ( t ) .  and approximate period 
of 46.24 time u n i t s  in Y ( t )  and Z( t ) .  Using the Matlab function you created 
in the previous item, solve the Lorenz system, for the parameters a, b and c, 
and initial condition given above, from time to  = 0 to  t f  = 250, with a time 
step At = 0.5. Plot the X ( t ) ,  Y ( t )  and Z ( t ) .  as a function of time. 
Now, choose three distinct initial conditions generated as 

u(0) = uo + w 

where the 3-vector w is normally distributed with mean zero and variance 
0.Ol2I, that  is, w - N(O.0.Ol2I). with I being the 3 x 3 identity matrix. 
Plot the result of the three corresponding solutions versus time. Comment 
on the results you obtain here and those obtained in the previous item. 
Using the vector notation introduced in this lecture, and exploited in Exer- 
cise 3, we can write the mean and (co)variance equations of item (a )  simul- 
taneously as 

3The Matlab functions lode231 and are "adaptive mesh" Runge-Kutta solvers for ordinary dif- 
ferential equations. The adaptive nature of these functions provide great accuracy, but do not allow for 
control of the number of time steps for a given integration interval. Since, in this exercise. we want to have 
the same number of time steps in all experiments. it is best to  write our own Runge-Kutta solver. 
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where the function g is defined as 

P U  (2) f[Pu + +-W%l ( t ) l W P l l ( t ) )  ( vec(Pu(t)) ) = ( {F'[p,,] @ 13 -I- 13 @ J%&]I weC(Pu(t)) 

where 13 is the 3 x 3 identity matrix, and we noticed that since f does not 
depend explicitly on t ,  its Jacobian and Hessian matrices also do not depend 
on t explicitly. Identifying the vector x(t) as the 12-vector [p,, wec(P,)IT, 
solve the equations for the  evolution of the mean and (co)variance above, 
for the Lorenz system. Plot the results of the evolution of the mean p,, = 
[pu p, p,] versus time, as well as those for the variances p, ,  p,, p,, and the 
cross-covariances p,,, p,, and pyz. 

v. Repeat the previous item, when the second-order correction term in the 
mean equation is neglected. Explain the difference from the results of the 
previous item. 

To really assess t o  correctness of the means and (co)variances obtained in the pre- 
vious exercise it is necessary to  perform Monte Carlo experiments, with extremely 
large samples or, alternatively, to solve the Liouville equation - Fokker-Planck 
cquation whcr, Q = 0 ~ which ia an eqiizition far t h e  t h e  evoliition of the piob- 
ability density function related to the stochastic process under consideration. 
Not surprisingly, this latest approach has  been shown by Ehrendorfer (1994a,b; 
[47, 48]), t o  provide the most reliable, and efficient, estimate of the moments of 
the probability distribution. This approach, however, is beyond the scope of our 
course, and for this reason we will rely on Monte Carlo experiments to  assess 
reliability of the means and (co)variances obtained in the previous exercise. 

i. Generating sample initial conditions in the same manner you generated the 
three distinct initial conditions in (b . i i i )  , perform three Monte Carlo exper- 
iments which integrate the Lorenz equations for three distinct total number 
of ensemble members: 50, 100, and 200. Using the Matlab function -1 
calculate the means pFc=', pyc=i ,  and pyc=i, where i = 50,100,200. Plot 
the results as a function of time. How do they compare with the evolution of 
the mean obtained in the previous exercise when the second order correction 
term was present in the mean equation? 

ii. Using the Matlab function m, calculate the variances  OF'=^)^, (uMC=' Y 1 ,  
and ( o ~ ~ = ' ) ~ ,  for each sample size i = 50,100,200. Compare with the re- 
sults obtained for p,, p , ,  and p ,  of the previous exercise. 

iii. Still using the same function m, calculate the cross-covariances cow(x, y ) ~ ~ = i ,  
cow(x, . z ) ~ ~ = i ,  and cow(y, Z)MC=; for each sample size i = 50,100,200. Com- 
pare with the results for pzy, p,,, and p,, obtained in the previous exercise. 

[Beware: We should really use a sample size of lo4, or larger, to  have a converged 
Monte Carlo run. However, this would only be feasible if we computed the 
means, variances, and cross-covariances on-line, that is, while running the time 
evolution. This would be the way to avoid the memory overload caused when 
storing the complete time history for each ensemble member, as we are doing in 
our experiments.] 
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8. Consider a system governed by the linear differential equation 

U(t) = F ( t ) u ( t )  

and assume that stochasticity comcs from the fact that we only know the initial 
condition t o  a certain degree. That is, the initial condition is 

u(0) = uo + E ( 0 )  

where ~ ( 0 )  has mean pol and variance P o .  We refer to  r ( 0 )  as the initial error. 

(a) Show that the error E @ ) ,  at time t ,  can be determined by 

E @ )  = @ ( t , t o ) @ )  

whwe +(t, to )  is the transition matrix related to  the governing equation for u(t). 
Therefore, for linear dynamics F(t), the error evolves according to  the same “law” 
as the state vector. 

(b) Show that the ensemble avcrage of the error p E ( t )  E I { r ( t ) )  evoIves according 
to  

P&) = W , t O ) P € ( O )  

P ( t )  = + ( t , O ) P o  aT(t,0) 

a n d  that the error variance P(t) E E { [ E ( ~ )  - p r ( t ) ] [ r ( t )  - pE(t )IT}  evolvcs 
according t o  

This expression is the solution of the 1,yapunov equation in the absence of Q, and 
P(t) in this case is sometimes referred to as the predictability error (co)variance. 

(c) In some applications it is important to determine which perturbations grow 
fastest within a given period of time. A measure of the growth of initial per- 
turbations can be obtained by defining a n  amplification factor coefficient A ( t )  
as 

(d) (Lacarra & Talagrand [91]) Going back to the time-independent matrix F of the 
previous problem, for which you have calculated the corresponding transition 
matrix +(t ,  0) ,  perform the following tasks: 

i. Calculate the amplification factor, a t  time t = T ,  for an initial vector ~ ( 0 )  = 

( ! ) T -  

ii. What is the amplification factor corresponding to  the largest eigenvalue of 

iii. Show that the eigenvectors of F are not orthogonal. 
F? 

9. Consider the linear advection equation in R1 for a univariate random field u(x, t ) :  

dU dU - + u - = o  
dt  d X  

with initial condition 
u(x,t = 0) = uo(z) 

where U = const. represents the advection speed. T h u s  determine: 
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(a) The evolution equation for the mean p(z ,  t )  = f ( u ( z ,  t ) } .  
(b) The evolution equation for the covariance function between two points z e y, 

that is, P(X1 Yl t )  = &{[+ t )  - P(X1 t)l[?J(Yl t )  - P(Y, t)l). 

10. (Cohn [28] and Mknard [104]) Consider Burger’s equation in one spatial dimension, 
for u = u ( z ,  t ) :  

du du d2 21 
- + u - = a - - + w  
at bx 8 x 2  

where Q = const. and w = w(z,  t )  is a stochastic forcing term white with zero mean 
and covariance Q(z, y, t ) .  Obtain the evolution equation for the mean p(x, t) and for 
the covariance P ( x ,  y, t ) ,  up to second order. From the covariance equation, obtain 
the evolution equation for the variance field. (Hint: There is no need to recalculate 
all the equations as if nothing was known. The intention here is t o  apply directly the 
results obtained in the end of this chapter). 



Chapter 4 

Introduction to Estimation Theory 

4.1 Concepts of Probabilistic Estimation 

The problem we are interest in this lecture is that  of estimating the value of an n- 
dimensional vector of parameters w, of a given system, on the basis of p observations 
taken on these parameters, and stacked in a p dimensional observation vector z. We refer 
to  i+ as the estimate of the vector of parameters w under investigation, and we refer to  
the quantity % = G - w as the estimation error. Based on the statistical formulation 
of the problem, we assume that the observational process is imperfect, and therefore the 
observations can be considered realizations of a random variable. Analogously, the vector 
of parameters w is seen as a quantity belonging to realizations of another random vector. 

4.1.1 Bayesian Approach 

In  Bayesian estimation theory we introduce a functional J’ which corresponds to  a measure 
of the “risk” involved in the estimate obtained for the parameter w. That is, we define 

where pw(w) is the marginal probability density of w. pwZ(w.z) is the joint probability 
density of the  random variables w and z, and the function J(G) is the one that provides 
the risk evaluation criteria, many times referred to  as the cost function. The problem of 
determining an estimate i% gets reduced to that of minimizing the risk, or expected cost 
value. by means of an appropriate choice of the functional J ( G ) .  We refer to  the value of 
i% providing the minimum as the optimal estimate. 

In general, t h e  optimal estimate depends on the cost function being employed. Example of 
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two common cost functions are the quadratic cost function, 

J =  11G112 = G'EG,  

where the n x n matrix E is assumed to  be non-negative and symmetric; and the uniform 
cost function, 

However, for a large class of estimation problems, the resulting estimate is independent of 
the choice of the cost function. 

A desirable property of a n  estimate is that it be unbiased, that is, that  its ensemble average 
equals the ensemble average of the variable of interest. This is expressed mathematically as 

E{*}  = E{w} (4.4) 

or in other words, the estimation error is zero: L{G} = 0 .  Estimates satisfying the equality 
above are said to  be unconditionally unbiased, which is more general than being a condi- 
tionally unbiased estimate, that is obeying 

ZjGlwj = w .  (4.5j 

4.1.2 Minimum Variance Estimation 

The minimum variance estimate, denoted GI,,, minimizes the risk function with the cost 
function given by (4.2). Therefore, the risk function to  be minimized is written explicitly 
as 

which, using the definition of conditional probability distribution (1.77), can also be written 
as 

JMV(*) = { /m (W - + ) T E ( W -  *) P w l z ( W l Z )  d w  Pz(Z) dz  
--oo --oo I (4.7) 

The  outer integral does not involve +, and since the marginal probability density pZ(z) is 
always positive, we see that  t o  search for the minimum of gMv is equivalent t o  minimizing the 
integral in the kernel of the expression above. The kernel can be identified as an expression 
for the conditional Bayes risk, tha t  is, 

00 

JMv(*lz) = (w - *)'E(w - *) pWlz(wlz )  d w  (4.8) 

which is what we want t o  minimize with respect t o  G. 

Using the definition of differentiation of a scalar function f = f(x) of an n-dimensional 
vector x, that  is, 

afo 
$ ax, 

(4.9) 
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we can show that for a constant n-vector a we have 

- -a. 
daTx dxTa 

dX d X  
- -~ - 

Moreover, for an R x n symmetric matrix A we have 

= 2 A x  dxTAx 
dX 

(4.10) 

(4.11) 

Applying these rules of differentiation to  the minimization of JMv(*1z) it follows that 

oc 
and for any E. 

cc 

*MV lm p w l ~ ( ~ I ~ )  dw = L, w p W I Z ( w l z )  dw (4.13) 

since the integral of pwlZ is unity (because p is a probability density), hence 

*MV(z) = wpWIZ(wlz )  dw 
J -m 

= E{wlz} (4.14) 

This estimate ha? the desirable property of being unbiased. This can be shown simply as 

I{%} = & { W - * M V }  

= &{w - &{wlz}} 
= &{w} - &{&{wlz}} 
= f {w}-&{w}  
= o  (4.15) 

where the fourth equality follows from the chain rule for expectation operators in (1.84). 

That  the solution (4.14) is in fact a minimum of JMV(*lz) can be seen by calculating the 
second derivative of th i s  quantity with respect t o  %, that is, 

(4.16) 

and since E is a non-negative matrix, the second derivative is non-negative, therefore the 
solution represents a minimum. Notice the extremely important fact that the estimate with 
minimum error variance (4.14) corresponds to  the conditional mean. Substitution of (4.14) 
in expression (4.6) provides the Rayes risk with minimum error variance. 

4.1.3 Maximum a posteriori Probability Estimation 

Another estimator is defined through the risk function for the uniform cost function (4.3), 
and can be written explicitly as 
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(4.17) 

where, some caution is needed in reading t h e  integrals inside the brackets: these are multiple 
integrals and the notation i+ E should be interpreted as 6 ,  and so on, for 
each one of the n components of the vector &. Since pwlz is a probability density function 
its integral over the whole Rn domain is unity, consequently the Bayes risk function can be 
written as 

& E ,  w 2  

(4.18) 

For the problem of minimizing Ju with respect to &, the first term gives n o  relevant 
contribution, thus we can think of minimizing 

or yet, we can minimize the conditional Bayes risk 

(4.19) 

(4.20) 

since pZ(z) is positive. As 6 >_ 0 approaches 0, the mean value theorem for integrals' can 
be employed to  produce 

J u ( W  = - PW(Z(&lZ) (4.21) 

which can also be obtained by noticing that as 6 approaches zero the cost function J(G) 
turns in to  a common representation for the negative of the delta function, in  an n-dimensional 
space, that is, the cost function becomes 

n 

(4.22) 
i= 1 

Minimization of Ju(i+lz) is equivalent to maximization of the conditional probability den- 
sity function pwlz(i+lz). The value & = GMAp that  maximizes this quantity is known as the 
maximum Q posteriori probability (MAP) estimate, and is determined by means of 

which is the same as 
dPV+ (wlz) 1 = o ,  

W = W M A ~  
d W  

'The mean value theorem for integrals (e.g., Butkov [ 2 2 ] )  can be stated as: 

(4.23) 

(4.24) 
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since that the variables w and i% play the role of "dummy" derivation variables. Knowing 
that pwlz is really a function of w, we prefer t o  use (4.24) rather than (4.23) t o  avoid 
confusion. The designation a posteriori refers t o  the fact that  the estimate is obtained after 
the observations have been collected, that is, probability of w given z .  An estimate of 
this type is briefly described in (1.29). consequently we can identify maximum a posteriori 
probability estimation with mode estimation. 

To maximize the probability density above is also equivalent to maximize its natural loga- 
rithm, In pwlz(wlz), with respect to w.  Using Bayes rule (1.79) we can write 

and since pZ(z) does not depend on w the maximum a posteriori probability estimate can 
be obtained by solving either 

or 

(4.26) 

(4.27) 

In general, the unbiasedness of the estimate is not necessarily guaranteed in this case. 

4.1.4 Maximum Likelihood Estimation 

In maximum a posteriori probability estimation it is necessary to know the probability 
density of the process of interest, that is pw(w).  In maximum likelihood (ML) estimation, 
we assume this a priori information is unknown. Assuming for the moment that the a priori 
probability distribution is Gaussian, with mean p, and covariance P,, we have 

(4.28) 

Hence, 

(4.30) 

which indicates that lack of information about the random variable w implies infinite vari- 
ance, P, + 00, or yet Pi' + 0 .  Thus ,  without a priori knowledge on  w we have 

(4.31) 

This is also assumed to  be the case even when the probability distribution of w is not  
Gaussian. 
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From (4.24) and (4.25), the maximum likelihood estimate of w can be obtained by 

or equivalently, 

(4.33) 

The estimate +%ML is sometimes referred to as the most likely estimate. However, because 
of the assumptions used in obtaining (4.33), this estimate is only reliable under certain 
conditions (see Jazwinski [84], p. 157). Just as in the case of the MAP estimate, the ML 
estimate is also a mode estimation, in analogy to (1.29). When we choose to refer t o  mode 
estimation, we should always make explicit which conditional probability is being maximized 
to avoid confusion, this defines whether we are performing MAP or ML estimation. As in 
MAP estimation, the estimate from ML is not guaranteed to  be unbiased. 

4.2 Example: Estimation of a Constant Vector 

In this section we exemplify the problem of estimation by treating the case of estimating 
a constant (time independent) vector w by means of an observational process corrupted by 
noise, represented by the vector v. We assume that w and v are independent and Gaussian 
distributed: w N N ( p ,  P), and v N N(0,R).  Moreover, the observational process is taken 
to  be a linear transformation 

Z = H W + V  (4.34) 

where w is an n-vector, z and v are m-vectors, and H is an m x n matrix, referred to  as the 
observation matrix which accounts, for example, for linear combinations among elements 
of the vector w. To obtain an estimate based on the methods described in the previous 
section, we investigate the probability densities of the random variables involved in the 
observational process. 

For the minimum variance estimate we need to determined 
density pwlz(wIz), so that we can solve the integral in (4.14). 

Pzlw (zlw)Pw(w> 
Pz (4 PWlZ(Wl4 = 

the a posteriori probability 
From Bayes rule we have 

(4.35) 

and consequently we need to determine each one of the probability densities in th i s  expres- 
sion. 

Since w is Gaussian, we can readily write 

(4.36) 

Linear transformations of Gaussian distributed variables result in Gaussian distributed vari- 
ables (e.g., Sage & Melsa [121], pp. 71-72; see also Exercise 4, here). Therefore, the 
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probability distribution for the observations is given by 

(4.37) 

where pz and Pz correspond to  the mean and covariance of the random variable z, respec- 
tively. These quantities can be determined by applying the ensemble average operator t o  
(4.34), and using the definition of covariance. Thus, 

pz = E{Hw} + &{v} = Hp (4.38) 

and also, 
T pz = f U Z - P , ) ( Z - ~ z )  I 

E {  [(Hw + V) - HP)] [(Hw + V) - Hp)IT> 
I {  [(Hw - Hp) - V] [(Hw - Hp) - vIT} 
HI{(w - p)(w - p)*}H* + I(VV*} 

= 
= 

+HI{  (w - p ) v T }  + &{v(w - P ) ~ > H * .  (4.39) 

Noticing that w and v are independent I{wvT} = 0 ,  and that v has zero mean, it follows 
that 

P, = H P H ~  + R (4.40) 

and consequently, the probability distribution of z becomes 

1 
pZ(z) = (~T)"/~I(HPH* + R)11/2 

- H P ) ~ ( H P H ~  + R)- ' (z  - Hp) . (4.41) 1 
It remains for us t o  determine the conditional probability density pz)zlW(zIw) explicitly. This 
distribution is also Gaussian (e.g., Sage 8~ Melsa [121] pp. 73-74). and ran be written as 

Analogously to what we have just done to determine p,(z), we have 

pzlw = I{Hw~w} + I{v~w} = HW 

and 

P z l w  = w z  - clzlw)(Z - P,lw)T1wI 
= E{ [(Hw + V) - Hw)] [(Hw + V) - Hw)IT I w )  
= &{vvTIw} 

= &{VV*} 

= R. 

Therefore, 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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which is the conditional probability of z given w. 

Combining the results (4.36), (4.41), and (4.45) in Bayes rule (4.35) it follows that  the a 
posteriori probability distribution we are interested in takes the form 

(4.46) 

where J is defined as, 

J(W) ( Z  - H W ) ~ R - ~ ( Z  - HW) + (w - P )  T p -1 (w - PI 
- (z - H P ) ~ ( H P H ~  + R)-'(Z - Hp) (4.47) 

This quantity J can also be written in the following more compact form: 

J(w) = (W - i + ) T P g l ( ~  - i+) (4.48) 

where PSI is given by 
pi1 W = p-'+ H T R - ~ H ,  

i+ = P ~ ( H ~ R - ~  + P - * ~ )  
the  vector i+ is given by 

(4.49) 

(4.50) 

and the reason for using the subscript G for the matrix PG, indicating a relationship with 
the estimation error, will soon become clear. 

According to (4.14), the minimum variance estimate is given by the conditional mean of 
the a posteriori probability density, that  is, 

(4.51) 

where the integration can be performed using the approach of moments calculation of the 
Gaussian distribution (e.g., Maybeck [loll; see also Exercise 3, here). 

The  maximum a posteriori probability estimate (4.24) is the one that maximizes pwlz(wlz) 
in (4.46), and is easily identified to be 

= i+.  (4.52) 

Thus we see that the minimum variance estimate coincides with the maximum a posteriori 
probability density estimate. 

Let us now return to  the reason for using the subscript G in PG. For that ,  remember that 
we defined the estimation error ii as the difference between the estimate and the actual 
value taken by the variable of interest, that is, 

G E i + - W .  (4.53) 

We want to show that  PG is indeed the estimate error covariance matrix. To verify this, 
let us show first that  p~ = 0, that  is, that the ensemble mean error estimate is zero for 
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the minimum variance and MAP estimates. In other words, we want t o  show that  these 
estimates are unbiased. Using (4.50) we have 

p* = E{(G-w)} 
= P,(H~R-'&{z} + p-lp) - p 

= P * ( H ~ R - ~ H  + P - I ) ~  - p (4.54) 

where we replaced z from (4.34). and we recall that v has zero mean. Therefore, using the 
definition of P, in  (4.49), it follows that p* = 0.  Given what we know from (4.15). this 
result comes as n o  surprise in  the case of the minimum variance estimate (4.51); in case of 
the MAP estimate this proves that (4.52) does provide an unbiased estimate. 

To show that Pi, is the error covariance matrix of the estimate. we observe that 
decomposed as 

can be 

w - i+ = - P ~ H ~ R - ~ H W  - P ~ H ~ R - ~ V  - P+P-~I.L 
= w - P*(P;~ - P - ~ ) w  - P ~ H ~ R - ~ V  - P ~ P - ~ P  
= P * P - ' ( ~  - - P ~ H ~ R - ~ v .  (4.55) 

Therefore, 
war{*} = cow{*,*} = &{(G- w)(G-  w) T } 

= PwP-l&{(w - p)(w - p)T}P-lP* 
+ P* H ~ R - '  q V V T } ~ - l  H P ~  (4.56) 

where the cross-terms give no contribution since w and v are independent, and because v 
has zero mean. Using the definition of P it follows that 

v a r { ~ }  = P*P-~P+ + P ~ H ~ R - ~ H P ~  
= P*(P-' + H ~ R - ~ H ) P *  
= P* (4.57) 

where (4.49) was used. This shows that P, defined in (4.49) is indeed the estimation error 
covariance matrix, thus justifying its subscript G. Moreover, it is simple to  see that 

IPGI = IHP-lHT + RIIPI(R1 (4.58) 

and therefore (4.46) can be written as 

(4.59) 

justifying the rewriting of J from (4.47) t o  (4.48). 

It is now left for us to determine the maximum likelihood estimate (4.33). This can be done 
by maximizing the probability density pzlw (zlw) in (4.45). Hence, 

= HTR-'(z - HGML) 
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that is, 
G~~ = ( H ~ R - ' H ) - ' H ~ R - ~ z  (4.61) 

which is, in principle, distinct from the estimates obtained above, following the minimum 
variance and maximum a posteriori probability estimation approaches. Remembering now 
that in maximum likelihood estimation we assume lack of statistical information regarding 
the process w,  and observing that this means P-' = 0 ,  we see from (4.50) and (4.49) that,  
in  this case, 

G M V I ~ - ~ = ~  = ~MApIp-i=o = (H*R-'H)-'H*R-~z G M L  (4.62) 

and therefore all three estimation approaches produce the same result. 

Applying the average operator t o  (4.61) we have 

& { * M L }  = 
- - 

- - 
- - 

where we used the fact that  v 
unbiased. 

( H ~ R - '  H) - l  H ~ R - ~  &{z} 

( H ~ R - ' H ) - ~ H ~ R - '   HE{^) + qv)) 
( H ~ R - '  H) - H ~ R - '  H&{ W }  

&{w> (4.63) 

has mean zero. This shows that the ML estimate is also 

I t  is simple to  show that  the maximum likelihood estimate error covariance is given by 

v a r { e M , )  = (H*R-~H)-'  (4.64) 

which is always greater than the error covariance obtained with the minimum variance 
estimation approach. This makes sense since the minimum variance estimate is that  corre- 
sponding to the minimum of the Bayes risk. 

Notice that  all estimates above result in a linear combination of the observations. Moreover, 
although in this example all three estimation procedures studied above provide the same 
estimate this is not always the case. An example in which these estimates do  not coincide 
is given in Exercise 2. 

Another remark can be made by noticing tha t  in the maximum a posteriori probability 
estimation context the denominator in (4.35) is not relevant for the maximization of the a 
posteriori probability distribution, as indicated in equations (4.26) and (4.27). This implies 
tha t  we can derive the result for in  (4.52) by minimizing the part of the functional J in  
(4.47) corresponding only to the probability density functions in the numerator of (4.35). 
That  is, we can define the functional corresponding to these probability densities as 

JMAp(w) = (z - H w ) ~ R - ' ( z  - H w )  + (w - p ) * P - ' ( w  - p) (4.65) 

and its minimization can be shown t o  produces the same result as in (4.50) with error 
variance a s  in (4.49) - see Exercise 3. Analogously, we can define a cost function related 
to  the a priori probability distribution associated with the maximum likelihood estimate, 
tha t  is, 

JML(w) (z - Hw)*R-'  (z - Hw) . (4.66) 

The  minimization of JML gives the estimate in (4.61) with error variance (4.64). 
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4.3 Least Squares Estimation 

All of the estimation methods seen so far, i.e., minimum variance. maximum a posteriori 
probability. and maximum likelihood, require statistical knowledge of part or all the random 
variables in question. However, when going from minimum variance and MAP to ML we 
relaxed the statistical assumptions by considering we knew nothing about the statistics of 
the variable(s) of interest (w, in that case). Relaxing even further the statistical assump- 
tions for the estimation problem takes u s  in to  the situation where we have no statistical 
information about any of the variables involved in problem. In this extreme case, estimation 
reduces to t h e  method of finding the least squares fit among the observations. 

Let us consider again. as a n  example, the observational process in  the previous section for 
an n-vector constant w. Let us  assume further that  several observations are taken about 
the variable of interest, and that the i-th observation can be written as 

z, = H,w + V, (4.67) 

where z,, H, and v, represent an  m,-observation vector, a linear transformation matrix 
m, x n and a m,-noise vector. respectively. It is important t o  recognize now that we are 
assuming we do not know the statistics of the noise v,, and also that due to  lack of statistical 
information we are not interpreting w as a random vector. 

By collecting the result of k experiments in a long vector, we can write the expression above 
in the following compact form: 

z k  = fikw + ck (4.68) 

where the mk-vector g k  is defined as: 

%k E [ZTZ; * "  Z Z l T  

and the matrix i i k ,  of dimension ~ , k  x n, is defined as 

H k  [HTH; ...H:IT. 

(4.69) 

(4.70) 

(4.71) 

The problem we want to consider is that of finding an estimate w k  which minimizes the 
quadratic function 3, 

(4.72) 

which measures the distance between the observations and the estimate. The value that 
minimizes this function is called the least squares estimate and is denoted by +kS. The pos- 
itive definite and symmetric matrix 6;' represents weights attributed to  each experiment. 
and convey a certain degree of confidence regarding the experiment in  question. 

The estimator function 3 is deterministic, therefore the problem of minimizing J' is a 
common optimization problem, where the solution GLs can be determined by means solving, 
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Then, the differentiation of (4.72) yields 

i i p , l ( Z k  - &Gy) = 0 

from where it follows that 
" T ' - l  6;' = P k H k O k  z k  , 

(4.74) 

(4.75) 

which is the estimate for the value of w. For convenience we define a matrix P k  of dimension 

(4.76) " T - - l -  Pk f ( H k O k  Hk)-', 

and assume that  the inverse exists. The matrix Pkl is sometimes referred to  as the Gram 
matrix. A comparison with the estimate provided by the ML (4.61) method shows certain 
resemblance, however, since R and Ok are not related in any way, this resemblance is purely 
formal. 

n x n a s  

Suppose now that an additional experiment was made and it produced a new observation 

(4.77) 

Then, by means of the notation introduced above, we can write 

&ti = H k + i W  -4- +k+l  1 (4.78) 

(4.79) 
where 

G + 1  = [Zk -T .k+llT T &+I = [ H k  ' T H T  k+1IT 7 +k+l  = [Vk -T %+I1 T 1 T * 

Direct use of the minimization procedure just described leads to  an estimate including the 
new observation Z k + l ,  and given by 

(4.80) - L S  - p  f i T  6 - 1  
w k + l -  k t l  k + l  k+l k+l? 

where P k + l  is defined, in analogy to  Pk,  as 

P k + l  = (fi;+16;:lfik+l)-1 , (4.81) 

and 6i:l is a new weight matrix that takes into account the observation z k + l .  

The processing of an extra observation forces us to have to  solve the minimization problem 
completely again. In particular, we have to calculate the inverse of an n x n matrix for each 
new observation made. This computational burden can be avoided if we assume tha t  the 
matrix 6Lil can be partitioned in the following manner: 

tha t  is, 6;!l is assumed to be a block-diagonal matrix. 

With this assumption, we can write the product of the matrices in Pk+l as 

(4.82) 

(4.83) 
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Furthermore, using the definitions of the matrices P given above, we have that 

p-1 -p-1 + HT k+rOiilHk+l (4.84) 
k+l  - k 

or yet, using the Sherman-Morrison-Woodbllry formula (e.g., Golub & Van Loan [67], P. 
51). 

P k + i  = (Pi1 + HZ+lOL:1Hk+l)-l 
= Pk - PkHz+1(Hk+iPkH;+1 + Orc+i)-'Hk+iPk. (4.85) 

Defining a matrix G k + l  as 

we can compactly write 
P k + i  = (I - Glc+tHk+i)Pk. (4.87) 

Therefore the estimate G$:l, which includes the new observation can be re-writt,en as 

*i:1 (I - Gk+iHk+i)PkH~+id;L:l?;k+*. (4.88) 

Using the matrix partition for dill,  introduced above! we can decompose the expression 
for the estimate in two terms, 

a T  k+l 6-1 k + l  ?; k+1 = Hk - T -  o,% + lG+lOL:,Zk+l 1 (4.89) 

and consequently (4.88) is transformed in 

where we used (4.75) t o  obtain the second equality. 

A even better expression for the estimate can be derived if we use the definition for the 
matrix G k + l .  In this case, the coefficient of the last term in the previous expression can be 
re-written as 
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Thus, the estimate can be placed finally in the form 

where Gk+l is given by (4.86). This expression provides a recursive manner of updating 
the estimate, given a new observation of the variable of interest and the estimate obtained 
before the new observation had been made. This recursive expression requires inverting an 
mk+l x mk+l  matrix embedded in the definition of Gk+l in (4.86), rather than the n x n 
matrix (4.81), for each new observation becoming available. This represents an enormous 
computational savings especially for n >> mk, for all k. 

4.4 Relationship between Least Squares and Minimum Vari- 
ance 

The cstimatcs produced by the minimum variance and least squares methods are of fun- 
damental importance in many studies in estimation theory. Consequently, in this section, 
we explore the relationship between these two estimates. 

To simplify this notation let u s  omit the index k from the previous section, so that the 
observational process can be written just as in (4.34), 

z = H w + v ,  (4.93) 

Moreover, the estimate of w provided by the least squares method is written as 

GLs = Mz , (4.94) 

where for convenience we define the n x m matrix M as 

Notice that  MH = I which, assuming the noise v has zero mean is a way of expressing the 
fact that  the estimate GLS is unbiased. To see this, we define the error associated to the 
least squares estimate as 

(4.96) 

Application the ensemble 

- 
WL’ z w - *LS , 

where once again we use a tilde to indicate an error vector. 
average operator, and using (4.93) and (4.94), it follows that  

which justifies the assertion above that the least squares estimate is unbiased. 

The  least squares estimate error variance can be calculated according t o  

pGLS =r{;cLS~,TS} = M & { V V ~ ) M ~  = M R M ~  
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where R is the (co)variance matrix of the noise v, as defined in Section 4.3. Substituting 
the value of M as defined above we have 

pGL = ( H~ o - * H) H~ o -I RO - H ( H~ o - H) - . (4.99) 

Now remember that,  by the procedure of Section 4.3, the linear estimate of minimum 
variance, with zero mean pw = 0 and for which Pw' = 0,  is given by 

i+Mv = (H~R-~H)-'H~R-~z. (4.100) 

which is the same as that obtained when using the approach of maximum likelihood esti- 
mation. As we know, this estimate is also unbiased, and with associated error (co)variance 

pGMV = (H~R- 'H) - '  , (4.101) 

as it can be seen in (4.50) and (4.51), and also (4.61) and (4.64), respectively. Therefore. we 
notice by comparison that the estimate obtained by the least squares method is the same 
as the one obtained by linear minimum variance when the matrix of weight 0 used by the 
first method is substituted by the noise (co)variance matrix, that  is, 0 = R. 

In general, t h e  weight matrix used in the least squares method is a general positive definite 
and symmetric matrix, without any statistical meaning; since the estimate provided by the 
minimum variance approach is that with minimum variance, for the linear case, it follows 
that in  general 

'*LS 2 '*MV 7 (4.102) 

where the equality holds when 0 = R. This inequality is valid even if we do  not use the 
fact that the estimate \jtMV is that of minimum variance. To derive th is  inequality, we can 
use the following matrix inequality 

A ~ A  2 ( B ~ A ) ~  ( B ~ B ) - ' ( B ~ A ) ,  (4.103) 

for A and B, of dimensions n x m, with n 2 m, and B of full rank. This derivation is left 
as an exercise. 

EXERCISES 

1. (Sage & Melsa [121], Problem 6.1) Another example of cost function, aside from those 
given in the main text, is that  defined by the absolute value of the error: J ( 6 )  = 
161 = I'u) - C I ~ ,  considering the scalar case. Show that in  t h i s  case, the estimate CABS 
that  minimizes the Bayes risk is the one for which we have: 

GABS .i_, P w l z ( ~ l 4  dm = LYBS P w l z ( 4 4  dw 

and that consequently, the estimate with minimum absolute value can be determined 
by solving: 
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for 2ir = WAss.  In other words, the estimate with minimum absolute value GABS is the 
median, as introduced in (1.27). Derive the corresponding modification of the result 
above for the vector case, if we define the cost function to be 

dx - - _  
d A  - 

2. Consider the observational process of a binary variable (binary signal), subject to 
noise (measurement errors). This scalar observation process can be written as 

where w and v are independent, and v is a gaussian noise, represented by N(O,o,"). 
The signal w follows the binary distribution defined as 

pW(w) = 0.56(w - 1) + 0.56(w+ 1) 
where S represents the Dirac delta. Then, 

(a) Determine the a priori probability density p+,(zlw). 
(b) Show that  the probability density pZ(z) is given by2 

1 ( z  - 1 ) 2  ( z  + q2 
P Z ( 4  = 2 6 u ,  {exp[- 2 4  ] + exp[- 2 4  13 

(c) Show that the maximum a posteriori probability estimate is WMAP = sign(z). 

(d) Show that the minimum variance error estimate is 2irMv = tanh (&). 
In the minimum variance estimation case, what happens when the observations be- 
come more accurate? 

3. Show that the solution of the minimization of J M A p  in (4.65) is given by (4.50) with 
error estimate (4.49). 

4. Writing a few terms for the traces in the  expressions below, verify that:  

(a) 

(b) d I T r  (dA ACAT)l = 2AC, where C is also symmetric 

= BT, where AB is symmetric 

where a;j is the (i, j)-th element of matrix A. 

'If a random variable z is defined as the summation of two independent random variables w and v the 
probability oft can be obtained via the convolution integral: 
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5 .  Show that 
T Gk+l = Pk+lHk+lO& 

is an alternative expression for the gain matrix Gk+1 found in the least squares esti- 
mation method. 

6. Let A and B be to  n, x m matrices, with n 2 m, and with B full rank (m).  Show that 

A ~ A  2 ( B ~ A ) ~  ( B ~ B ) - *  ( B ~ A ) .  

(Hint: 1Jse the following inequality: 

(Ax + B Y ) ~ ( A X  + By) 2 0 

valid for any two m-vectors x e y.) Now, to show the inequality in  (4.102), without 
making use of the fact that ~ M V  is a minimum variance estimate for the linear case, 
make the following choice: 

A = R ~ / ~ R . I * .  B = ~ - 1 1 2 1 - 1  

and complete the proof as suggested in the end of section 4.5. 
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Chapter 5 

The Linear Kalrnan Filter 

In this lecturc we derive and study the Kalman filter and its properties for the case of time- 
discrete dynamics and time-discrete observations. The case of time-continuous dynamics 
with time-continuous observations is mentioned without many details, and the case of time- 
continuous dynamics with time-discrete observations is not considered is this course. The 
content of this lecture can be found in classic books of stochastic processes and estimation 
theory, such as. Anderson & Moore [I]. Gelb [60], Jazwinski [84], Meditch [103]. and Sage & 
Melsa [121]. In this lecture, we also introduce a convenient notation to  treat the assimilation 
problem of meteorological and oceanographic data,  to be discussed in lectures that follow. 

5.1 Derivation of the Linear Kalman Filter 

5.1.1 Estimation Problem in Linear Systems 

We derive the Kalman filter using the estimation approach of minimum variance, following 
the derivation of Todling & Cohn [129], which deals with the problem of atmospheric data  
assimilation to be studied later. 

Consider a time-discrete, linear stochastic dynamical system written in matrix-vector no- 
tation as 

w: = Q k - i W k - 1  -k b k - 1  , 
for the discrete times t k ,  with IC = 1 , 2 , .  . ., and where w: is an n-vector representing the 
true state of the system at time t k ,  \ E k  is an n x n matrix that  represents the dynamics, 
and the n-vector bi is an additive random noise? which we refer to as the model error. The 
process b; is assumed to  be white in time, with mean zero and (co)variance Q k ,  that is, 

(5.1) 
t t 

&{bi}  = 0 ,  &{bi(b$)T} = Q k 6 k k ’ .  (5.2) 

Consider also a linear observation process described by 

wi = H k W i  4- bi , 
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where k now is a multiple of e, the number of time steps of between two consecutive 
observations in time. The mk-vector wi is the vector of observations, the matrix m k  x n 
represents a linear transformation between the true variables into the observed ones, and 
the mk-vector bi is an additive noise, representing error in the observational process, as for 
example, error due to  instrument accuracy. We assume that  the random noise v k  is white 
in time, with mean zero and (co)variance R k ,  tha t  is, 

We also assume that  the observation noise V k  and the model error are uncorrelated, that 
is, 

&{bi(b$)T} = 0 .  (5.5) 

The problem treated in the previous lecture was that  of estimating wi given the observation 
process (5.3) alone. In this lecture, we add t o  the estimation problem the constraint that 
the variable of interest comes from the linear stochastic dynamical system (5.1). However, 
since the dynamical system in (5.1) involves the stochastic noise b: and an unknown initial 
state, we replace that model by what we refer to as a forecast model that  we write as 

w,f = * k , k - e w i - t  7 (5.6) 

where the symbol f stands for forecast and the symbol a stands for the “initial” condition 
at time t k - e ,  from which we start  a forecast, and referred to as the analysis. The forecast 
model represents another way we have of estimating the state of the system at a particular 
time. The matrix * k , k - e  is the propagator, or transition matrix, between times t k - e  and 
t k ,  and is given by 

q k , k - e  E q k - 1  q k - 2  * q k - e  , (5.7) 

where here we make a distinction between the propagator and the one t ime  step dynamics 
through the double subscripts to indicate the propagator. 

An estimate of the state of the system at time t k  can be obtained by means of a linear com- 
bination between the observation at time t k  and the forecast at the same time. Therefore, 
we can write for the estimate wi at time t k ,  

wi = tkw,f + g k w i  , (5 .8)  

where c k  and f i k  are weighting matrices still to be determined. 

Let us define the forecast and (estimate) analysis errors as 

(5.9a) 
(5.9b) 

In analogy t o  what we saw in Lecture 4, we would like to have an estimate that is unbiased. 

and using (5.3) it follows that  
In th i s  way, subtracting wi from both sides of (5 .8 ) ,  as well as from w k  f in that  expression, 

(5.10) 
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Now assuming that the forecast error, a t  time t k ,  is unbiased, that is, & { e { }  = 0,  we should 
satisfy 

( t k  + kkHk - I)&{Wi} = 0 (5.11) 

to  obtain a n  unbiased estimate (analysis), i.e., &{e:} = 0 .  As in general &{wL} # 0 ,  we 
have that 

t k  = 1 - kkHk (5.12) 

is t,he condition for a n  unbiased w i .  

Substituting result (5.12) in (5.8) we can write for the estimate of the state of the system 

wk a f  = wk + i;;k(wi - HkW{), (5.13) 

and for the estimate error 

e; = (I - kkHk) e{ + kkb", (5.14) 

The weight matrix Kk: or gain matrix as it is more commonly known, represents the weights 
given to  the difference between the observation vector and the forecast transformed by t,he 
observation matrix Hk. We have seen in Lecture 4, that different procedures come up with a 
formula for the estimate that resembles (5.13): however they use distinct gain matrices, e.g., 
recall t h e  comparison between minimum variance estimation and least squares estimation. 

- 

Using (5.1) and (5.6) it follows that 

(5.15) 

which is a n  equation for the evolution of forecast error 

Introducing the forecast and analysis error covariance matrices 

P: &{(wi - WL)(Wi - WL)T} ( 5.1 sa) 
P; G &{ (wi - W i )  ( W i  - wZ)T} , (5.16b) 

we can proceed as in Section 3.2.2 to obtain an expression for the evolution of the forecast 
error covariance: 

1-1 

p{ = *k,k-lpZ-,*&-, + * k , k - J Q k - j - l * z , k - j  1 (5.17) 
j = O  

which is a form equivalent (iterated) to  the discrete Lyapunov equation (3.40). 

An expression for the (estimated) analysis error covariance P;l: can be determined by multi- 
plying (5.14) by its transpose and applying the ensemble average operator to  the resulting 
expression. Therefore, we have 

Pi = (I - kkHk)P{(I  - RkHk)T -/- k k R k k E ,  (5.18) 

which is referred t o  as Joseph's formula. Equations (5.17) and (5.18) completely describe the 
evolution of errors in the forecast and analysis. An interesting property of the equations for 
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the error (co)variances is that they are independent of the estimates (analysis and forecast), 
and also from the observations. The only necessary quantities t o  predict the evolution of 
the error (co)variances are the noise (co)variance matrices, Q k  and Rk, the initial error 
(co)varianc-e matrix PE, and matrices Hk and l?k, at  each time t k .  In principle, all these 
matrices are known, except for the gain matrix l?k which is to  be determined by means of 
an optimization procedure that  requires minimum error variance. 

5.1.2 The Kalman Filter 

To treat the problem stated above in the lights of minimum variance estimation we intro- 
duce an estimator that  serves as a measure of reliability of the analysis. That is, a quantity 
measuring the distance between the estimate and the true value of the state of the system 
at time t k ,  

(5.19) 

As in Lecture 4, we want this measure of error t o  be minimum with respect to the elements 
of the  gain matrix f&. The matrix n x TZ matrix Ek introduced in the functional above is 
a scaling matrix, which we assume to be positive definite and deterministic, which in many 
cases can be substituted by the identity matrix. As we will see below, the solution of the 
minimization 3; is in fact independent of E k .  

Substituting the expression (5.18) for Pi in (5.19), differentiating with respect to kk, (using 
the differentiation rules of Exercise 4.4), and equating the result to zero we obtain 

E k  {HkPL(I - - Rkl?;} = 0 (5.20) 

Therefore, independently of Ek, the quantity between curly brackets becomes zero for 

which corresponds to  the minimum of 3;. The matrix KI, is the optimal weighting matrix, 
known as the Kalman gain matrix, since this estimation problem was solved by Kalman [87]. 
Although estimation problems date back from the times of Gauss [57], it was Kalman who 
solved the problem in the dynamical systems context, using the state-space approach. As a 
matter of fact, Kalman derived the result obtained above in a much more elegant way based 
on the orthogonal projections theorem. The solution obtained by Kalman has practical 
consequences that go much beyond previous results in estimation theory. Kalman & Bucy 
[90] extended the Kalman filter to the case of time-continuous dynamics and observation 
process. An excellent review of filtering theory can be found in Kailath [86], and the 
influence of Kalman's work in several theoretical and applied areas is collected in Antoulas 
[31- 
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1. Advance in time I 

4. Update Error Covariance 

3. State Update 
W; = W: + K~(w;I .  - Hkwi)  

L Pz = (I - KkHk)Pi  . J 

Figure 5.1: Schematic diagram of the linear Kalman filter. 

Substituting the Kalman gain matrix in the expression for the analysis error covariance 
(5.18), it is simple to  show that this equation reduces to  

Pi = (I - KkHk)Pi (5.22) 

which is a simpler expression. The optimal estimate of the state of the system at time t k  is 
given by (5.13) with a general gain matrix i i k  replaced by its optimal value, that  is, 

WE = Wh + Kk(wi - HkWk). f (5.23) 

Fig. 5.1 shows schematically the steps involved in the execution of the linear Kalman filter 
for the case e = 1, that is! when the observations are available at each time step. The case 
E = 1 will be considered from th is  point on to  keep the notation simple. 

5.1.3 Comments: Minimum Variance and Conditional Mean 

We saw in the previous lecture that in Bayes estimation theory the estimate of minimum 
variance is given by the conditional mean. Let u s  now establish the connection between 
the derivation of the Kalman filter given above and the example discussed in the previous 
lecture, of estimation of a constant vector. What we will see is that, that  the example 
corresponds to the analysis step of the Kalman filter. 
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Let us  indicate by W i  = {wg, wi - l ,  e ,  wy}, the set of all observations (5.3) up and 
including time t k .  Similarly t o  the case in the previous lecture, the problem of estimating 
the state of the system at time t k ,  based on the observations Wi can be placed as the 
problem of determining the conditional probability density p(w:l W;) , where, to  simplify 
notation we omit the subscript in p referring t o  the stochastic process in question. By the 
result of Section 4.2.1, we know that 

WE = e{w:lwg> 
(5.24) 

and therefore, knowledge of p(w:IWi) is fundamental t o  determine the estimate. 

In fact, using repeatedly the definition of conditional probability density we can write 

P(d lWi)  = P(w:IwL wi-1) 

Since the sequence of observational noise {bi} is white, the following simplification applies: 

P(wilw:, w-1) = P(wiIw:) (5.26) 

and therefore. 

(5.27) 

It remains for us  t o  determine each one of the transition probability densities in this ex- 
pression. 

Assuming the probability distributions of wh, bi and Vk are Gaussian, we can draw a 
straight relationship among the variables here and those in Section 4.3. Specifically, we can 
identify z with wi and w with w:, therefore, the probability densities pZ(z) and p,lw(zlw) 
can be identified with the probability densities p(wi) and p(w;lIw:), respectively. Conse- 
quently, we can write for p(wi[w:), 

where we notice that 

~ { w ~ I w : }  = I{(Hk~:+bi) /w:}  = HLW: (5.29) 
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and 

cozI{w;, wilwi} G &{[w; - &{w;llw:}][w; - &{W;IW:}]TIW:} 

= Rk. 

Analogously, we have 

where we define w: as 
WL &{wilw;-l}, 

the matrix mk x mk matrix rk as 

f T  rk 3 HkPkHk + Rk, 

and the n x n matrix Pi as 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

To fully determine the a posteriori conditional probability density p(wiIW;), it remains for 
u s  t o  find the a priori conditional probability density p ( ~ i \ W i - ~ ) .  Since we are assuming 
that w: and b: are Gaussian distributed, ~ ( W L - ~ I W ~ - ~ )  is Gaussian, and it follows from 
t,he linearhy of (5.1) that p(wiIW!-,) is also Gaussian. Therefore, all that remains for us  
to  determine are the mean &{wilWi_,} and the (co)variance cow{wL, wilWg-,}. 

From the definition (5.32) of w: we have 

WL = f{wilw;-l> 
= *k-i&{wi-1lw~-1} -k &{bi-1lWi-1} 
= *k-l&{wi-1Iw~-1} -k &{bk-l} 
= *k-lw;-l (5.35) 

where the last equality is obtained by observing that  bi-l has mean zero, and by using 
the definition of the estimate  WE-^, as the conditional mean at time t k - 1 .  This expression 
represents the time evolution of the estimate, and it justifies the somewhat ad hoc forecast 
model that  appeared in (5.6). The expression above is also identical to that found in (3.33) 
for the evolution of the mean. 

The expression for the (co)variance matrix cou{w~, wLlWi-,} can be easily shown to  be 

COu{W;. w:lwi-1} = *&1P:-1*k-, -k Qk-1 
T 

= PL, (5.36) 

where we recall that  to simplify notation we are assuming that observations are available 
a t  all times, that is, the expression above corresponds to  that in (5.17) with = 1.  Fur- 
thermore, (5.36) is identical to the time-discrete Lyapunov equation (3.40). 
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From the result (5.36) and the definition (5.32), we can write 

so that, proceeding as in Section 4.3, the conditional probability density (5.27) of interest 
becomes 

(5.38) 

where J i  is cost function defined as 

where e; G (wi-w:) as in (5.9). We can now identify the quantities 4rMv and PG of Section 
4.3 with w; and P;, respectively. Consequently, it follows from this  correspondence that 

Since in Section 4.3 we showed that GMv was the minimum variance estimate (4.51) for 
the problem dealt in that section, it follows immediately that w; is the minimum variance 
estimate of the problem we are studying in this section. 

To complete the correspondence between the treatment of this section and that of the pre- 
vious section, we notice that the most remarkable difference between these two treatments 
is that the ensemble average operator of the previous section was the unconditional ensem- 
ble average. On the other hand, in  this  section, the ensemble average operators are the 
conditional ones, that is, conditioned on the observations. As a matter of fact, during the 
derivation performed in the previous section we advanced the result obtained in this section 
that the forecast and analysis error covariance matrices Pi and P; are in fact independent 
from the observations, see (5.36) and (5.40), that  is, 

(5.41) 

and 

Pi = E{[w: - f{w:lw;l-}][w: - r{w:lw;}]Tlw:} 
= l{[wi - w;][wL - w;]Tlw;} 
= l{[Wk - w;][w: - W$IT>. (5.42) 

Consequently we can replace the conditional error (co)variances by the unconditional error 
(co) variances. 

Following some remarks in the previous chapter, we see that a n  equivalent cost function to  
that in (5.39), associated to  the maximum a posteriori estimate, is 

J ~ ~ ~ ~ ~ ( W ; )  (w; - H ~ V V : ) ~ R L I ( ~ ;  - H ~ W : )  + (w: - w { ) T ( ~ k f ) - l ( W :  - w{). (5.43) 
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This cost function can also be written in its 3-dimensional variational form (e.g., Courtier 
[361) , as 

. J 3 d V a r ( 6 W k )  = ( V k  - H k 6 W k ) T R i '  ( V k  - H k b w k )  + 6 W r ( P { ) - * d W k  (5.44) 

where 6 w k  w: - w{ = -e{ ,  and we notice that 

wi - H k W i  = WE - H k w f  + H k W k  f - H k W i  

= V k - H k 6 W k  (5.45) 

f where v k  is the innovation vector, v k  G w i - H k w k .  And from the same discussion presented 
before, the minimization of (5.44) produces to  the same solution as that found from the 
minimum variance approach. 

5.2 Properties of the Kalman Filter 

5.2.1 Whiteness of the Innovation Process 

The behavior. or more adequately the performance of the Kalman filter is reflected in the 
statistical properties of the so called innovation sequence, where the innovation vector at 
time t k  is defined as 

v k  = W i  - H k w k .  f (5.46) 

Adding and subtracting wi on the right hand side of this expression, and using the equation 
for the observation process (5.3), we can re-write the innovation vector as 

v k  = v k  - H k e f  k (5.47) 

from where it follows that & { V k }  = 0 ,  that is, the innovation sequence h a s  mean zero. 

In this section we are interested in investigate the behavior of the cross-, or lagged- 
innovation covariance matrix, between times t k  and t k - - ) ,  defined as 

r k , k - - )  & { ( v k  - & { v k } ) ( v k - j  - z { V k - j } ) T }  

= & { v k v l - - ) }  (5.48) 

using that the innovation sequence has mean zero. From (5.47) we can write 

f f T  
r k , k - j  = z { [ v k  - H k e k ] [ V k - - )  - H k - j e k - j ]  } 

= H k t ( e k ( e k _ j ) ' } H r - j  f f  + f { V k ( V k - j ) T }  

f f T T  - H k & { e k ( V k - j ) T }  - & { V k ( e k - j )  } H k - j  

For the particular case of j = 0, the innovation covariance takes the form: 

r k  = H k P { H l  f R k  

where we used (5.4) and (5.16). 
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To investigate the case with j > - 1, it helps to  derive a general expression for the forecast 
error e{. In this  regard, let u s  combine (5.14) and (5.15) t o  get 

e{ = a k - 1  [ I  - k k - i H k - 1 1  e{-, + * k - i k k - i b Z - i  - b i - 1  (5.51) 

for any gain matrix k k - 1 ,  and reminding the reader that we are considering the case e = 1. 
Making the transformation k + k - 1 in the expression above, we have 

and substituting this back in (5.51) it follows that 

f [ I [  e k  f = \ k k - l  I - k k - i H k - 1  q k - 2  I - R k - 2 H k - l l e k - 2  

+ *k-1 [I - R k - i H k - i ]  *k-2&-2bi -2  + * k - i k k - i b i - l  

- * k - i  I - R k - i H k - i ]  b k - 2  t - b k - 1  t . (5.53) [ 
We can continue this iterative procedure by making the transformation k -+ k - 2 in (5.51), 
substitute the result back in the expression above, and so on, so that after j iterations we 
get 

k-1 

(5.54) 
i=k-j 

where we define the transition matrix *k,k- j  as 

and also *k,k = I .  

Substituting the result (5.54) in t h e  general expression for the innovation covariance matrix 
(5.49) we have 

r k , k - j  = 

- 

(5.56) 

where we notice that,  by causality, the term containing & { V k ( e { - j ) T }  in (5.49) is zero. 
Using the fact that the sequence of observation noise is white (5.4), and also that the model 
error bi are uncorrelated with the observation error V k t  (5.5), for all k and IC’, it follows 
tha t  
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We can write this expression in a more convenient form, by noticing that 

(5.58) * k , k - j  = @ k , k - j + l \ k k - j  [ 1 - k k - j H k - j  I 
and making use of the optimal Kalman gain matrix &, that is, 

r k , k - j  = H k @ k , k - j + l \ k k - j  [I - R k - j H k - j ]  P i - j H L - j  - 
- H k @ k , k - j + l  q k - j K k - j R k - j  

1 = H k @ k , k - j + l \ k k - j  [ P k - j H T - j  J - k k - j H k - j P k - j H k - j  J T  - k k - j R k - j  

= H k @ k , k - j + l * k - j  [ P k - j H k - j  - k k - j  ( H k - j P k - j H T - j  -t R k - j ) ]  
f T  f 

= H k + k , k - j + i \ k k - j  K k - j  - k k - j ]  ( H k - j P k - j H L - j  f -k R k - j )  [ 

P L - j H f j  = K k - j  ( H k - j P L - j H : - j  + R k - j  ) 

(5.59) = H k @ k , k - j + l \ k k - j  [ K k - j  - k k - j ]  r k - j  

where the second to last eqi~alit~y is obtained by noticing that (5.21) can be written as 

(5.60) 

making IC -+ k - j .  Consequently, for the optimal filter, when K k - j  = K k - j ,  we see that 
the innovation cova.riance is zero, that is, 

- 

r k , k - j  = 0 for all k, and for all j > 0 . (5.61) 

In other words, the innovation sequence is white in  time when filter is optimal. This property 
stimulates the  monitoring of the innovation sequence to  determine the performance of a 
general sub-optimal filter. 

5.2.2 Orthogonality between the Estimate and the Estimation Error 

The estimate produced by the Kalman filter, w;, at any given time t k ,  and its correspondent 
error e: are orthogonal. Mathematically, this is expressed as 

&{wE(ei)T) = 0 ,  (5.62) 

which is only true in the optimal case, that is, when K k  = K k .  A path to  demonstrate this 
property is indicated in Exercise 5.4. 

5.2.3 Observability and Controllability 

The concepts of observability and controllability are independent of the Kalman filter 
theory being considered in th i s  lecture. These concepts are related to  dynamic systems in 
general. However, they are of fundamental importance when studying stability properties 
of the Kalman filter, and for that reason we introduce these concepts in what follows. 

Observability is a concept introduced to  express our ability to  construct the states w;, wi,  
of a system, given a sequence of observations wt, wi', . - .  , w;. To exemplify observability 

e ,  wi 
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(cf. Gelb [60]), consider the evolution equation for the true state of the system for the case 
in which there is no stochastic forcing and in which the dynamics is independent of time, 
that is, 

wi = \k e t  wk-e (5.63) 

represented the n-vector of the state of the system at time tk obtained from the state at 
time tk-e .  Furthermore, consider a perfect observation process, for which the observation 
matrix H is a vector hT of dimension 1 x n, and independent of time. In this way, we can 
write 

W: = hTwk 
20: = hT\kw; 

T 2 t  w; = h \.k wo 

or yet, using vector notation, 

(5.65) 

Therefore the question of observability reduces t o  the ability of reconstructing the initial 
state of the system by means of the observations wg, w:, ,  WE-^. Whether we can recov- 
ering the initial condition wk of the system from the observations or not, can be assessed 
by considering the matrix Z = Z,, of dimension n x n, defined as 

Z, E ( h 6 * h  (\kT),-lh ) T  (5.66) 

and whether this matrix is invertible or not. The matrix Z, is invertible if i t  is of rank n. 
We say that a system is observational in a time t k  > t o ,  if it is possible to construct an 
initial state w; from observations wi in the time interval ( to ,  tk). The system is said t o  be 
completely observational if the states wi can be obtained from all of the observations wi. 

In the general case, when the matrix H is of dimension m x n, where m is the number of 
available observations, the observability matrix Z, is redefined as: 

Z, E ( HT \ kTHT . . .  ('T)n-lHT ) T  (5.67) 

and it is a matrix of dimension nm x n, which should be of rank n for the system t o  be 
completely observable. 

The concept of observability can be made more precise by introducing the so called infor- 
mation matrix Z, 

k 
Z ( k ,  k - N )  E qTkHTRylH;\ki,k (5.68) 

kk-N 
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which occurs in several recursive forms in least squares problems (or in the Kalman filter; 
see Jazwinski [84] pp. 205-207). According to  Kalman [88] the dynamic system (5.1) and 
(5.3) is said to be completely observable if, and only if, 

Z(k ,O)  > 0 (5.69) 

for all k > 0. Moreover, the system is said to  be uniformly completely observable if there is 
an  integer N ,  and positive constants o and P ,  such that 

0 < 01 5 Z ( k , k  - N )  5 PI (5.70) 

for all k 2 N .  It is interesting to  notice that observability depends on the properties of the 
dynamics and the observation matrix Hk, but not explicitly on the observations WE. 
Analogously, we can introduce the concept of controllability. This concept comes from 
the idea of introducing a deterministic forcing term in  the evolution equation to  drive the 
system toward a pre-specified state, within a certain period of time. This subject is, in  
itself, thc motivation for the development of a theory called optimal control. Analogously 
to  what is done in  estimation theory, in optimal control a performance index [similar to  
the cost function J in  (5.19)] serves as a measure of the proximity of the solution to  the 
specified state. The minimization of the performance index determines the optimal forcing 
term, in the least squares sense, necessary to  drive the state of the system to the specified 
state. The problem of linear optimal control is said t o  be the dual of the linear, estimation 
problem, in the sense that results from estimation theory have cquivalent counterparts in  
control theory. In particular, the concept of observability, briefly introduced above, is the 
dual of the concept of controllability. As a consequence, we can study controllability by 
means of the controllability matrix, defined as 

(5.71) 

which is the dual analogous of the observability matrix. Consequently, we say that thc 
dynamic system (5.1) and (5.3) is completely controllable if, and only if, 

C ( k , O )  > 0 (5.72) 

for all k. Furthermore, we say that the system is uniformly completely controllable if there 
exists a n  integer N ,  and positive constants o and P such that 

O < a1 5 C ( k , k -  N )  5 PI (5.73) 

for all k 2 N .  More details about this duality can be found in Kalman's original work [87], 
as well as in textbooks such as Gelb [60], Bryson & Ho [20], and also in the atmospheric 
sciences literature Ghil & Malanotte-Rizzoli [64]. 

The concepts of observability and controllability mentioned above are fundamental to  es- 
tablish stability results for the Kalman filter. In what follows, we summarize these results, 
following Dee's summary [44], which is based on the discussion Jazwinski's Section 7.6 [84]. 

When we inquire about system stability in the context of the Kalman filter, we are referring 
to  the stability of the stochastic system described by the analysis equation 
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where Kk is a Kalman gain matrix (5.21). The dynamics \ k k , k - l  is assumed t o  be stable, 
that is , 

I / * k , O / /  5 c1 (5.75) 

for all k 2 0. Here 1 1 . 1 1  is an appropriate matrix norm, such as the spectral norm. In fact, 
the homogeneous system corresponding to (5.1) is said t o  be asymptoticaily stable if 

for k + 00. Furthermore, the homogeneous system corresponding to  (5.1) is said to  be 
uniformly asymptotically stable if 

for all k 2 0. 

For this stable dynamics, the following results can be obtained, for the system governed by 
(5.74): 

1. The analysis error covariance matrix Pi is uniformly bounded from above and below: 

[W, - N )  + c-’ (k, - q 1 - l  5 Pi 5 [ P ( k ,  k - N )  + C ( k ,  k - q 1 - 1  (5.78) 

for all k >_ N .  

2. If Pi 2 0 ,  the Kalman filter is uniformly asymptotically stable, that is, there are 
constants c4 and c5 such that 

for all k 2 0, where @k,o is the transition matrix introduced in (5.55). 

3. If Pg and S i  are two solutions of the Kalman filter equations for two initial conditions 
Pi 2 0 and Si 2 0,  then 

which means that the error estimates of the Kalman filter are stable with respect 
to  the errors of the initial state. In other words, the linear Kalman filter eventually 
- as data is processed in time -“forgets” about the uncertainty in the initial error 
covariance. 

The notions of observability and controllability were initially introduced for systems gov- 
erned by ordinary differential equations (see Ghil & Ide 1631 for an application of interest 
t o  atmospheric sciences). These concepts can be extended to  the case of systems governed 
by partial differential equations. A series of articles on this subject can be found in the 
Stavroulakis [125]. The problem of observability for discrete partial differential equations 
was investigated by Cohn & Dee [31]. 
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F1 

F 2  

F3 

F 4  

F5 

Table 5.1: Computational requirements of the Kalman filter (mh = m). 
“Brute-force” implementation of the Kalman filter 

Ref. Variable Equation Calculation Flops 
*k- 1wi- 1 *W 2n2 - n w : 

Kk PiHz(HkPiHz + & ) - I  H P  2n2m - nm 
( H P ) H ~  2nm2 - m2 
(HPHT) + R m2 

(PHT)(HPHT + R)-l 
(HPHT + R)-’ 2m3 

2nm2 - nm 

w i wkf + &(w: - HAW:) Hwf 2nm- m 
wo - Hwf m 
K(w” - Hwf)  2nm - n 
wf + [K(w” - Hwf)]  n 

5.3 Computational Aspects of the Kalman Filter 

5.3.1 Generalities 

We show in Table 5.3.1 the equations involved in the implementation of the Kalman filter. 
Although these equations are used for the case of linear systems, many approximations for 
the nonlinear case involve similar equations with equivalent computational cost - some 
computational burden is added to nonlinear systems due to  the calculation of the Jaco- 
bian matrices (see the following lecture). The table displays computational cost measured 
in units of flops - floating point operations (multiplications and additions) - related to  
“brute-force’‘ implementation of these equations. By “brute-force’’ we mean implemen- 
tations following the operations in the table neither taking into account storage savings 
of certain quantities nor preventing repetitive calculations of other quantities. A detailed 
treatment of various implementations of the Kalman filter equations is given in Mendel 
[106], however for atmospheric data assimilation applications the description here should 
suffice. In these applications, many of the matrices in the formulas in  Table 5.3.1 are not 
explicitly invoked due t o  their complexity. and are rather treated in operator form. 

The following are factors t h a t  may be exploited to  render computation costs more accept- 
able: 
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the symmetry of the error covariance matrices can be used to reduce storage require- 
ment. 

the analysis Pz and forecast Pi error covariance matrices can share the same space 
in memory. 

in  applications to atmospheric da ta  assimilation, the dynamics \kk is a sparse matrix 
due relatively small finite-difference stencils, and only its non-zero elements need to 
be stored in memory. As a matter of fact, in th i s  case, the operations corresponding 
to  the application of \kk to an n-vector is of order n, instead of n2, as indicated in 
the table for the general case. Moreover, \k never really exists as a matrix, but rather 
as an operator. 

The  Kalman filter is subject t o  computational instabilities due to different possible ways 
to program its equations. A simple case is discussed below showing that Joseph’s formula 
(5.18) for calculating the analysis error covariance matrix is computationally more stable 
than the expression (5.22), with respect to errors in calculating the gain matrix Kk (see 
next section). Even the ordering of the factors in the multiplication among matrices in the 
algorithm is relevant and may be responsible for numerical instability as discussed in details 
by Verhaegen & Van Dooren [134]. 

Assuming that  n >> m, or else, that  the number of degrees of freedom n of the system 
is much greater than the number of observations m k  = rn, at any given time, it is clear 
from Table 5.3.1 that  equation F2 is responsible for the major part of the computational 
cost in the Kalman filter algorithm. In general, the cost of propagating the analysis error 
covariance matrix, t o  get the forecast error covariance matrix, is of the order of n3; in the 
particular case of sparse dynamics, the cost gets reduced to  n2. For problems governed by 
partial differential equations, as in the case of atmospheric da ta  assimilation, the number 
of degrees of freedom n reaches levels as high as 106-107, with great potential for increase 
as resolution of atmospheric models increase. This large number of degrees of freedom for 
problems in assimilation da ta  assimilation prohibits ‘‘bruteforce” implementation of the 
Kalman filter, even when the factors for cost reduction mentioned above are taken into 
account. Consequently, we are required to develop approximations to  equation F2, and in 
some cases even to  the analysis error covariance update equation F5. A lot of the research 
in applying the Kalman filter to atmospheric da ta  assimilation h a s  been done with relation 
t o  th is  topic (see Todling & Cohn [lag], and references therein). 

5.3.2 Sensitivity of the Filter to the Gains 

The asymptotic stability concept for the Kalman filter discussed previously in this lecture 
is relatively strong, and not always the conditions for uniform asymptotic stability are 
satisfied. In practice, however, instability in the Kalman filter algorithm, or in  suboptimal 
implementations of the algorithm, can be associated to lack of knowledge of model errors, 
observation errors, and even to  specific problems due to numerical implementation of the 
algorithm. In this section, we look at more closely to th is  last aspect of instability, that  
is, that due to numerical implementation. We show that  certain formulas are in fact more 
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prone to  numerical errors and can be, sometimes, the cause of eventual divergence of the 
filter. 

In  order t o  simplify notation, we momentarily omit the index referring time in the filter 
equations. In this manner the error covariance matrix update equation can be written using 
Joseph's formula as 

p a  = (I - K H ) P ~ ( I  - K H ) ~  + K R K ~  (5.81) 

where the Kalman gain matrix is given by 

K = PfHT(HPfHT + R)-' (5.82) 

Alternatively, as we have seen above, the simpler formula for the analysis error covariance 
matrix can be obtained by substituting the optimal gain (5.82) in (5.81), that is, 

p a  = (I - K H ) P ~  (5.83) 

Numerical implementation of the  Kalman filter generates numerical errors, even when t h e  
optimal filter is utilized - e.g., due to randoff error. In this regard, we want to  investigate 
the effect in Pa caused by small errors in calculating K numerically. For that,  aqsume 
that the gain K undergoes a modification SK after numerically solving (5.82), so that from 
(5.83) it follows that, 

p a  + SP" = (I - K H ) P ~  + S K H P ~  (5.84) 

and therefore. t h e  instantaneous error in Pa is given by 

6pa = S K H P ~  (5.85) 

which is of first order in  SK. 

Instead, using Joseph's formula (5.81) for the modified gain we have 

pa + SP~, ,  = (I - KH - S K H ) P ~ ( I  - KH - S K H ) ~  

= (I - K H ) P ~ ( I  - K H ) ~  + K R K ~  
- (I - K H ) P ~ H ~ S K ~  - SKHP~( I  - K H ) ~  
+ S K H P ~ H ~ S K ~  + K R S K ~  + ~ K R K ~  + S K R S K ~  

= (I - K H ) P ~ ( I  - KH)T + K R K ~  + S K ( H P ~ H ~  + R ) ~ K ~  

+ (K + SK)R(K + 6K)T 

+ [K(HPfHT + R) - P f H T ] b K T  
+ 6K[K(HPfHT + R) - PfHTIT (5.86) 

and therefore, using (5.82) and (5.81) it follows that 

S P ~ J , ~  = S K ( H P ~ H ~  + R ) S K ~  (5.87) 

This shows that Josephk formula is of second order in errors made when calculating the 
gain matrix, and therefore it is numerically more stable. Consequently, in many engineering 
implementations of the Kalman filter Joseph's formula is preferably used. 
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5.3.3 Serial Processing of Observations 

Serial processing of observations was introduced in the literature by Bierman [la], and 
discussed in Parrish & Cohn [113] in the context of atmospheric data assimilation. In this 
section, we assume for simplicity that all the available observations are uncorrelated at all 
times t k .  We have in mind the uncorrelatedness not only in time, but also among variables 
at a fixed time. 

When m observations are available at time t k ,  to  say these observations are uncorrelated 
among themselves is to  say that the matrix Rk is diagonal, for all I C ,  that  is 

(5.88) 

where o;, i = 1,2 ,  ..., m, are the observation error standard deviations. Following the 
treatment of Parrish & Cohn [113], let us omit the index k in this section to simplify 
notation. 

In th is  case, the observation process in (5.3) can be decomposed as 

w,” = hTwt 3 + bS 3 (5.89) 

for j = 1,2,  . . . , p ,  where w: is a single scalar observation, the vector h: is the j- th row of 
the observation matrix H, and b: is a random number that satisfies 

E {  ( b y }  = uj 2 , (5.90) 

for each j. 

The assumption that the m observations, available at any given time, are uncorrelated of 
each another means that these observations can be processed (or assimilated) as if they 
became available at infinitesimally small time intervals apart. Consequently, we can iter- 
ate the equations (5.21), (5.18) and (5.23) over the observations so that we get, for each 
observation j :  

kj = Pj-lhj(hj T Pj-lhj + oj”)-’ 
Pj = ( I -  kjhj)Pj-l T 

wj = wj-1 + kj(w,” - hj T wj) 

(5.91a) 

(5.9 1 b) 

(5.9 1 c) 

which resembles the algorithm derived in Section 4.4 for processing a newly available o b  
servation vector with the least squares algorithm. In that case, we have also assumed 
uncorrelatedness among observations, which was explicitly seen when writing (4.82). 

Since the quantities in  parenthesis in (5.91a) and in (5 .91~)  are scalars, and the vector 
Pj-lhj is used many times in different places, we can introduce an auxiliary vector vj 
(which should not be confused with the innovation vector introduced in earlier in this 
lecture) , 

vj = Pj-1 hj , (5.92) 

so that the observation process gets reduced t o  the following algorithm: initialize with the 
forecast error covariance matrix and the forecast state vector, 

Po = Pf , (5.93) 
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and 
W Q = W  f ; 

respectively, and iterate the following set of equations: 

(5.94) 

(5.95a) 

(5.9 5 b) 

(5.9 5c) 
(5.95d) 
(5.95e) 

(5.95f) 
(5.9 5g) 

for each j = 1,2,  ... ,m,  so that, a t  the last iteration we have 

P, = P“ , (5.96) 

for the analysis error covariance matrix, and 

w, = w a  , (5.97) 

for the analysis state vector. The computational advantage of this algorithm is that it avoids 
the need to  invert the m x m innovation error covariance matrix in (5.21), t o  calculate 
Kalman gain matrix Kk. In the serial processing procedure, the inversion of this matrix 
is replaced by the inversion of the m scalar quantities in (5.95a). The demonstration of 
consistence between the serial algorithm above and the standard algorithm can be done 
by following an analogous procedure t o  that of Section 4.4, to  process a newly available 
observation with the least squares algorit hrn. 

The use of Joseph‘s formula and the consequent use of P, may suggest the need t o  define 
an auxiliary matrix of the size of the forecast error covariance matrix. However, th i s  is only 
apparent, due to the notation used in writing the algorithm above. When programming 
these equations, the matrix P j  is t h e  only one required, that is, matrices Pj and P j  can 
share the same storage space. Also notice that when the elements of the state vector are 
directly observed, that is, when there are no linear combinations between the elements of 
the state vector in order t o  produce the observations, the elements of the vector h j  are all 
zeros except for one of them, which is in fact the unity. Consequently! the operations in 
(5.92) and (5.95d) are equivalent to extracting a column of the matrices Pj. 

One disadvantage of the serial processing is that we do not have access t o  the complete gain 
matrix K, but rather only to the arrays k,. If we are only interested in the final result of the 
analysis, there is no need to  obtain K explicitly: however. if we are particularly interested 
in  investigating the  influence of a certain observation on to distinct elements of the state 
vector (e.g., Ghil et al. [66]), it is necessary t o  calculate the complete gain matrix. The 
simplest way to recover the gain matrix, when using serial processing. is to do so after having 
obtained the analysis error covariance matrix by making use of the alternative expression 
for the gain matrix, 

Kk = PEHTRk’, (5.98) 
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where, in writing the expression above we restored the time subscript IC, t o  emphasize the 
fact that this should be done at the end of each analysis time t k .  

EXERCISES 

1. Show that (5.18) reduces t o  (5.22) for the optimal Kalman filter gain. 

2. (Gelb [60], Problem 4.8). Consider the following continuous-time dynamical system, 
and corresponding continuous-time observation process: 

X = F(t)x + G(t)w 

z = H(t)x + v 
where the noises w e v are considered N(0 ,  Q ( t ) )  and N(0 ,  R(t)), respectively, and are 
also decorrelated. Assume that the state estimate evolves according t o  the following 
expression: 

i = L a + K z  

where the matrices L and K are t o  be determined following estimation and optimiza- 
tion arguments. Imposing the restriction that the estimate be unbiased, show that 
L = F - KH, and obtain the following simplified form for the estimate evolution 
equation : 

S = F(t)2 + K(z - H2) 

Next, show that the error estimate covariance matrix evolves according to  the following 
expression: 

P = (F - KH)P + P(F - K H ) ~  + G Q G ~  + K R K ~ ;  

notice that this is a general expression, in the sense that it is valid for any matrix 
K. This expression is continuum equivalent of the Joseph formula (5.18) for the 
discrete-time case. As a matter of fact, we can show through a limiting procedure 
equivalent to  that of Section 3.1.3, that the expression for the discrete case reduces 
to  the expression above as time approaches zero (e.g., see Gelb [SO]). Defining a cost 
function as a measure of the ratio of error change, that  is, J = Tr(P), show that its 
minimization leads to  the following expression for the optimal gain matrix K = K: 

K = PHTR-’ 

Using this formula for K,  show that the evolution equation for the error covariance is 
transformed to  

P = FP + P F ~  - P H ~ R - ~ H P  + G Q G ~ ,  

which is known as the Riccati equation (e.g., Bittanti et al. [13]) 

3. (Gelb [60], Problem 4.11). Consider the following dynamical system and measurement 
processes: 

i = a z  + w 
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where the noises w and v are white in time, and normal, with mean zero and variances 
9 = const. and r = const., respectively, for constants a and b. Assuming the initial 
error variance is PO, show that the optimal filter error variance is given by 

("PO + 9)  s inh  Pt  + P p o  cosh Pt 

( $ P O  - a )  sinh Pt  + P cosh Pt 
P ( t )  = 

where 
P = a++ -& b29 

Furthermore, show that the steady-state ( t  + CC) variance is given by 

which is independent of the initial variance P O .  Obtain pa for a perfect model: that  
is, when 9 = 0. Give an interpretation to  th is  result. 

4. Show that the Kalman filter estimate wt is orthogonal t o  its error e:, for all I C .  Using 
finite induction, start  by showing that 

and that 
E{w,"(e ," )T)  = o 

Then, assume that f { w g ( e a k ) T }  = 0 is true, and show that  

& { w ; + 1 ( e t + J T }  = 0 

is satisfied. 

5 .  (Ghil et al. 
system: 

[SS]) Consider the Kalman filter applied to the scalar, discrete-time 

x k  = axk-1 + wk 

zk = xk  + vk 

where the noises wk and vk are white, normal with mean zero and variances q = const. 
and r = const., respectively. In this case, the Kalman filter reduces t o  the following 
system of equations: 

p {  = A P E - ,  + B9 

r p { / ( p {  + r )  , para k = jt?, j = 1.2 ,  - 
de outro modo Pak = f { p k  

where 
A = a z e ,  R = xg& 

Defining sg = p:e, for j = 0, I , ,  2. * .  . show that 

(AS'-l+ B9)r s -  ' - As,-l + Bq + r 
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Consider now the perfect model case, that  is, when q = 0, with initial error variance 
po = SO. Show that for la1 # 1, 

sj = A ~ ( A  - 1)sor 
A(Aj - 1 ) ~ o  + ( A  - I ) T  

and that for la1 = 1, 
SO r s j  = ~ 

j s o  + r 
Finally, show that when j + o;, we have 

sj + 0 Para I4 5 1 7 

sJ + (I  - f ) ~ ,  para la1 > 1.  

Interpret the asymptotic results obtained above. 

6. (Chui & Chen [25], Problema 2.14) Some typical engineering applicat,ions are classified 
under the designation ARMA (autoregressive moving-average), and can be written 
as: 

N M 

i= 1 i=O 

where the matrices B1, . . . , BN are n x n dimensional, and the matrices Ao, . . . , AM, 
are n x q, and are independent of the time variable I C .  Considering M 5 N ,  show that 
this process can be written in the following vector form: 

Xk+i = Axk + Buk 

Vk = CXk + DUk 

for a vector Xk of dimension n N ,  with xo = 0, and where 

C=[IO. - .O]  e D = A o .  

7.  Multiple choice. (from Bryson &L Ho [20]) Consider the scalar estimation problem 

2;+1 = 2; + w; 
'7; = 2; + 17; 

where w; N N(0,  q )  and white; Vi N N ( 0 , l )  and white; w; and vj are uncorrelated for 
all i and j ;  and there is no initial knowledge of 20. If 0 < q < oc, then the optimal 
estimate i; is given by 
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(a) 2; = f E;=, z j  

(c) ?;+I = i; + IC;(z;+1 - &), l / ( i  + 1) < IC2 < I 
(d) i;+, = 2; + IC;(z;+, - ii), 1 < IC; < 52 

(b) ii = 2; 

Justify your answer. 

8. Multiple choice. 
measurement z: 

(from Rryson & Ho [20]) A static estimate of x is made from a 

z = H X + V  

with v N Ar(V, R) and x - N(x, P).  The estimate is 

where K is some constant matrix. The estimate is 

(a) unbiased 

(b) biased with a bias of (KHx)  
( c )  biased with a bias of (Kv) 
(d) biased with a bias of [K(G - Hx)]  

Justify your answer. 

9. Computer Assignment. (Partially based on Lewis (1986) ’, Example 2.5-2.) Computer 
Assignment. Consider the following linear dynamical process’ 

and the following observation process 

for w(k) - h‘(0, Q):  v(k) N N(0, r / T )  and both uncorrelated from each other at all 
times. Here the (co)variance Q is given by 

For the choice of parameters: w = 0, o = -0.l.r = 0.02, and T = 0.02, address the 
following questions: 

(a) Is the dynamical system stable or unstable? 

‘Lewis, F.L., 1986: Optrmal Estrrnatzon wzth a n  Introductson to StoChQstZC Control Theory. John Wiley 

‘This dynamical system arises from an Euler discretization of “damped’ harmonic oscillator given by 
& Sons, 376 pp. 

& ( t )  + 2a?j + u2 = 0 

where stochastic forcing is applied after discretization. 
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Using Matlab, simulate the stochastic dynamical system from k = 0 to  IC = 500, 

starting from xo = ( ::; ) . Plot the state x k  against k. 

Using the linear Kalman filter, simulate the evolution of the error (co)variance 
matrix, starting from the initial condition PE = I, where I is the 2 x 2 identity 
matrix. Plot the analysis error variance, in both variables, for the same time 
interval as in the previous item. 

Is the filter stable or unstable? Explain. 

Are your answers to  questions (a) and (d) incompatible? Explain. 

Plot the true state evolution together with the analysis estimate3 for both vari- 
ables and for the time interval in item (b). 

Suboptimal filters: Let us now study the behavior of two suboptimal filters. Be- 
fore starting, however, replace the analysis error (co)variance equation in your 
Matlab program by Joseph formula (if you are now already iising it). We men- 
tioned in this lecture that Joseph formula is valid for any gain matrix &, thus 
we can use it t o  evaluate the performance of suboptimal filters. 

1. 

.. 
11. 

Assuming the calculation of the forecast error (co)variance is computation- 
ally too costly for the present problem, we want to  construct a suboptimal 
filter that  somehow replaces the calculation of Pi by a simpler equation. Let 
us  think on  replacing the equation for Pi by the simple expression P: = I. 
With this choice of forecast error (co)variance, it is simple to see tha t  the 
gain matrix becomes 

itk = H T ( H H ~ + T / T ) - ~  

- HT l+r /T  
- 

where we used explicitly that H = (1 0) for the system under consideration. 
Keeping the equation for PL, in your Matlab code as dictated by the Kalman 
filter, replace the expression for the optimal gain by the one given above. 
This turns the state estimate in a suboptimal estimate. Also, since you have 
kept the original expression for the forecast error (co)variance evolution, 
and your are using Joseph formula for the analysis error (co)variance, these 
two quantities provide now filter performance information due to suboptimal 
choices of gains. With the “approximate” gain matrix above, is the resulting 
filter stable or unstable? Explain. If this is not a successful choice of gain 
matrix, can you explain why that  is? 
Let us know build another suboptimal filter that replaces the gain by the 
asymptotic gain obtained from the optimal run in item (b). To obtain the 
optimal asymptotic gain, you need t o  run the experiment in  item (b) again, 
output the gain matrix at the last time step from that  run, and use it as 
a suboptimal choice for the gain matrix in this item. You should actually 

3Remember that your initial estimate should be sampled from the initial state where the initial error is 
N(0, Pz), that is, 

writing is a very symbolic manner. 
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make sure that the gain has asymptote by looking at its value for a few time 
steps before the last time step, and verifying that these values are indeed 
the same. Now run a similar experiment than that of the previous item, but 
using the asymptotic gain for the suboptimal gains at all time steps. Is the 
resulting filter stable or unstable? (Note: This choice of gain corresponds to  
using the so called Wiener filter.) 
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Chapter 6 

Basic Concepts in Nonlinear 
Filtering 

6.1 Introduction 

In this lecture, we are interested in treating the estimation problem for nonlinear systems. 
Due to the difficulties involved in problems of this type, and the various possible methods t o  
approach them, we will confine this lecture to  the study of the case of systems governed by 
stochastic ordinary differential equations. In fact, we assume that the case of atmospheric 
data assimilation, which the governing equations are a set of partial differential equations, 
can be formulated in terms of a system of ordinary differential equations. In general, th i s  
can be done by treating the space variables on a discrete grid, restricting in this manner the 
infinite dimensional problem to the case of finite dimension. Although this type of argument 
is in general a good starting point for dealing with the problem of data assimilation in earth 
sciences. i t  appears that the best way would be to  study the system of governing equations 
and observational process in the continuum, at  least to  a very good extent. Discretization 
leads to modeling errors which have not been treated appropriately so far in  that field. For 
further details related t o  th is  point of view the reader is referred to  the excellent discussion 
in Cohn [27]. 

We saw in Lecture 4, that in  many cases of Bayes estimation an estimate of the variable 
of interest reduces to the conditional mean. As a matter of fact, the estimate of minimum 
variance is the  conditional mean. In case of Gaussian processes, other optimization criteria 
produces similar estimates to  the one given by the minimum variance. Furthermore, we saw 
in Lecture 5 ,  that when a linear observation process is combined with a linear dynamical 
process the Kalman filter provides the best linear unbiased estimate (BLUE). When the 
statistics of errors are Gaussian the Kalman filter estimates correspond to the conditional 
mean. In the nonlinear case, even with Gaussian error statistics. the resulting estimates 
are not Gaussian distributed and consequently different Bayes optimization criteria lead 
to  distinct estimates, in particular not necessarily coinciding with the conditional mean. 
One of the consequences of Gaussian error statistics in the linear case is that only the first 
two moments are enough to  describe the process completely; in the nonlinear case, on the 
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other hand, moments of higher order may play an  important role in describing the process. 
Ideally, the transition probabilities related to  the processes under consideration should be 
the quantities being calculated, however, in most practical applications calculating these 
quantities requires computations well beyond available resources. 

A precise treatment of the estimation problem for nonlinear systems can be made following 
statistical arguments. Since the probability density of the variables of the system contain 
all the necessary information to  describe the system, the probabilistic method studies the 
evolution of the probability density in time, as well as the way by which this quantity is 
modified as observations become available. In Lecture 3, we obtained evolution equations 
only for the first two moments of the probability density for nonlinear dynamical systems. 
In fact, it is possible t o  show that the probability density evolves according t o  the Fokker- 
Planck equation, and once its evolution is determined we can determine any desired moment. 

For the continuous-discrete system case, the conditional probability density evolves through 
the Fokker-Planck equation during the intervals of time in which there are no observations. 
At observation times the transition undertaken by the probability densit,y due t,o t,he ob- 
servations can be evaluated through Bayes rule. The rigorous mathematical treatment 
following this procedure can be found, for example, in the classic text books of Jazwinski 
1841 and Sage & Melsa [121], or in more modern texts such as that of Bksendal’s [108]. The 
precise treatment of nonlinear estimation problems is beyond the scope of our introductory 
course. 

6.2 The Extended Kalman Filter 

In this section, we follow the simple treatment of Gelb [SO] to  derive the so called extended 
Kalman filter. We consider the continuous-discrete system problem, that is, the case in 
which the dynamics evolves continuously in time whereas the observations are available at 
discrete times t l ,  t 2 , .  . .. The modification for the case in which the dynamical system is 
discrete in time can be derived using the results from Section 3.2.2. 

The continuous-time dynamical process, corresponding to  the evolution of the n-vector 
wt(t) - the variable of interest - is written here as 

dwt(t) 
dt = f(wt,t)  + bt(t) 

and the discrete-time observation process, at times t k - 1  5 

WE = h(wi) + bi 

where the wi  =_ wt(t = t k ) ,  and the m-vector wi  corresponds t o  the observation vector. 
We assume the n-vector process noise { b t ( t ) }  is white in time, Gaussian, with mean zero 
and (co)variance Q(t). Similarly, we assume the m-vector observation noise {bi} is white 
in time, Gaussian, with mean zero and (co)variance Rk. Moreover, the processes (bt(t)} 
and {bg} are assumed to be uncorrelated at all times. Analogously to  what we have done in 
the previous lecture, let us indicate by Wi = {wi, wiMl, . . . , w;} the set of all observations 
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up to  and including time t k .  The n,-vector function f corresponds to  the dynamics of the 
system and the m-vector function h corresponds to  the observation operator. 

The most common procedure to deal with estimation problems for nonlinear systems is 
that of minimum variance. Since the estimate with minimum variance corresponds to the 
conditional mean, we choose to calculate the conditional mean during the interval of time in 
which there are n o  observations. In this way. we want to  calculate € { ~ ' ( t ) l W ; - ~ }  during 
the interval of time t k - 1  5 t < t k .  According to  to  (6.1) it follows that 

where we used the fact that  the process {b(t)} is white and has mean zero. 

A measure of the error in  the estimate can be obtained by means of the conditional error 
(co)variance matrix P(t), defined as 

p(t) f([w'(t) - f{wt(t)IWi-l}] [ ~ ' ( t )  - f { ~ ' ( t ) ( W i - 1 } ] ~  lW;-l} (6.4) 

for tk-1  5 t < t k .  The evolution equation of this matrix between two consecutive obser- 
vation times can be determined as in Lecture 3. Integrating (6.3) between t k - 1  and t k .  
substituting the result in  the definition of P, differentiating the resulting expression and 
using the properties of the processes {w'(t)} and {bt( t )}  we obtain (see Exercise 6.1): 

P(t)  = E{wt(t)fT[wt(t), t ] p q - 1 }  - E{W'(t)lW;I-l}E{f[Wt(t), t l lWL}T 
t 
+ Q ( t )  (6 .5 )  

E{f[wt(t), t]wtT(t) p ; - 1 }  - f{f[w'(t), t]lW;-,}E{wt(t)IW;-, IT 

which is often written in the more compact form, 

P ( t )  = &{wtfT}k-l - &{wt}k-l&{f}:-* 

4- E{fwtT}k-l - f{f}k-if{w'}C-l + Q(t) (6.6) 

where we wrote the conditional ensemble mean operator in the compact form: & { ( . ) } k - l  = 
&{.\W;I-l}, and we omitted the explicit functional dependencies of wt and f .  The equations 
for the mean and error (co)variance are not ordinary differential equations in the usual sense 
because they depend on the ensemble mean. To solve these equations it is necessary to  know 
the probability density of the process {wt(t)}, which in  general is not known. Moreover. 
we should calculate the corresponding moments depending on the function f[w'(t)]. 

The simplest approximation to  the equation for the evolution of the mean (6.3) and to  
the equation for the evolution of the second moment (6.6), follows what we have seen in 
Lecture 3. That is! let u s  introduce the forecast vector wk as a suitable approximation for 
the conditional mean, that is! 

f 

wf(t) = f{wi(t)Iw;-1} (6-7) 

In the extended Kalman filter, we expand the function f[wt(t)] as a Taylor series about the 
approximate mean wf(t),  and retain only up to the the first order term. Thus, in the time 
interval t k - 1  5 t < t k ,  between two consecutive observations, we write 

f[wi(t), t] x f[wf(t), t] + F'[wf(t), t](wt(t) - W f ( t ) )  
' 

(6.8) 

105 



where, as in  Lecture 3, 3 is the n x n Jacobian matrix defined as 

Consequently, using the expansion and (6.7) the forecast equation becomes 

Wf(t )  = f[wf(t),t] (6.10) 

valid for the times t in the interval between t k - 1  and t k :  Using the expansion (6.8) in (6.6) 
we obtain that 

which is identical to  what we saw in Lecture 3, with the additional restriction that this 
expression applies only when t E [ t k - l  , t k ) .  Notice that here, 

Pf(t) = E{[W"t) - Wf(t)}] [w"t) - Wf(t)}]T} M P(t) (6.12) 

that is, P/(t) is an approximation to the conditional error (co)variance matrix P(t). 

The problem of producing a n  estimate w;t in t k  of the state of the system, using the 
observation w;, is what we want t o  solve in order to obtain a filtered estimate. Motivated 
by the results obtained in the linear case, we assume that such a n  estimate can be obtained 
as a linear combination among the observations. Hence, we write 

where the n-vector uk and the n x  m matrix i t k  are deterministic (non-stochastic) quantities 
t o  be determined from statistical and optimization arguments, just as we did in the linear 
case. 

Introduce the analysis and forecast estimation errors, that is, e; is the error in the estimate 
at time tk which includes the current observation, while ef is the error in  the estimate at 
time t k  which includes observations only up t o  time tk -1 :  

(6.14a) 

(6.14b) 

By adding and subtracting wi from the left-hand-side of expression (6.13), and using (6.2) 
we can write 

Now, adding and subtracting W{ from the  right-hand-side of last equality above we get 

e! = uk + kk [h(wi) + bi] + ef - wk f (6.16) 
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According to  Bayes estimation, one of the desired properties of an estimate is that it be 
unconditionally unbiased. This means that we want &{e;} = 0 .  Therefore, applying the 
ensemblc mean operator to  the expression above it follows that 

E { e i }  = E {  [uk + kkh(wL) - w:]} + &{bok} + E{e:} (6.17) 

Recall that  the sequence {bok} has mean zero, t h u s  &{be} = 0 .  Moreover, inspired by the 
linear case, we assume that the forecast error is unbiased. A word of caution is appropriate 
here: it is important to  recognize that this is an assumption we know can only be approx- 
imately correct since the forecast is only a n  approximation t o  the conditional mean, that 
is, 

&{e{ }  = ~ { w :  - wL} 
x E { f { W L p q - , } }  - &{WL} 

= I{w:} - &{w:} 
= o  (6.18) 

With that in mind, from (6.17) we see that for the estimate to be thus &{e:} x 0 .  
(approximately) unbiased we should satisfy: 

E{  [Uk 4- kkh(W:) - w:]} = 0 (6.19) 

Since u k  was assumed to  be deterministic we have 

uk = E {  [w: - kkh(w:)]} 

- - W: - kkf{h(w:)} 

Substituting this result in (6.13) we obtain 

(6.20) 

w;t = W: + k k  [wok - &{h(w:)}] (6.21) 

Moreover, t h e  analysis error can be re-written as 

e: = e: + k k  [h(wL) - E{h(w:)} + be] (6.22) 

As in the linear case, we want to  minimize the analysis error variance (6.22). We introduce 
the analysis error (co)variance matrix 

P: E €{e; (6.23) 

and the problem of minimization is reduced to  the problem of minimizing the trace of this 
matrix, 

3; G Tr(P;) (6.24) 

as in (5.19), but  using Ek = I in  that expression, without loss of generality. 

From (6.22) it follows that 
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Applying the trace operator to th i s  expression and using the rules from matrix calculus 
introduced earlier in this lecture, we can solve 

(6.26) 

t o  find that the gain matrix minimizing Ji is given by 

kk E Kk = & { e :  [C{h(wi)} - h(wi)IT} 

(6.27) 

Substituting this gain matrix in the general equation for the analysis error (co)variance at 
time t k  we have 

Pi = P: - Kk& { [E(h(w:) - h(wi)}] (e:)T}  (6.28) 

(see Exercise 6.2). Equations (6.22), (6.27) and (6.28) provide the minimum variance es- 
timate, optimal gain and corresponding error (co)variance at  time t k .  These expressions 
involve the ensemble average operator and consequently cannot be used directly. Anal- 
ogously to  the Taylor expansion used for f[wt(t),t], when deriving a closed form for the 
evolution of the first and second moments in  the interval of time between two consecutive 
observations, we expand the function h[wt(t)] about the estimate of the state of the system 
available a t  time t k  before the observations are processed, that  is, wk. f Therefore, 

h[wt(t)] x h[wf(t)] - X1[wf(t),t](wf(t) - w'(t)) 

= h[wf(t)] - X1[wf(t), t]ef (t) (6.29) 

where 31' is the m x m Jacobian matrix defined as 

(6.30) 

of the m-vector function h. The substitution of this approximation in expressions (6.22), 
(6.27) and (6.28) produces 

w;l, = w: + Kk [wg - h(wL)] (6.3 1 a) 

(6.31 b) 

Pi = [I - &%!'(w:)] Pi (6.3 IC) 

which correspond to  a closed set of equations for the update of the state estimate, gain 
matrix and corresponding error (co)variance. The equations above, together with (6.10) 
and (6.11), form the set of equations constituting the extended Kalman filter. In case the 
functions f and h are linear, these equations reduced t o  those of the standard Kalman filter, 
derived in the previous lecture. The results obtained above can be extended to the case 
of continuous-time observation processes. Also, higher order expressions can be derived 
by considering higher order terms in the Taylor expansions for the functions f and h (see 
Gelb [60], Jazwinski [84], and Sage & Melsa [121]). Equations for the case of discretetime 

108 



Table 6.1 : Extended Kalman filter: discrete-discrete systems. 
wk = $(w; -~ )  + bL-l 
wi  = h(w:) + bg 

Dynamical Process 
Observational Process 
Estimate Propagation wkf = +(w!-~)  

Error Covariance 
Propagation 

pi = F’(W!_l)PR-1.7’T(W!-1) -t Q k - i  

Gain Matrix 

Estimate Update wg = wkf + Kk [wg - h(wkf)] 

Estimate Error 
Covariance IJpdate 

PE = [I - Kk%’(w{)] Pi 

dynamics and discrete-time observations which can be derived simply by using the equations 
for mean and (co)variance evolution given in Section 3.2.2, are displayed in Table 6.2, which 
is an adaptation of Table 9.4-3 of Sage & Melsa [121]. Applications of the extended Kalman 
filter in the contexts of atmospheric and oceanic da ta  assimilation are those of Burger & 
Cane [2l], Daley [38], Evensen [52]. Mknard [104], Miller e t  al. [107], to cite just a few. 

It is important to  notice that ,  contrary to  what we saw in Section 5.1.3, The analysis and 
forecast error (co)variance matrices now depend on the observations - therefore expressions 
(5.41)-(5.42) is n o t  valid in the nonlinear case. The error (co)variance matrices are func- 
tions of the Jacobian matrices 3’ and Z’, which are functions of the current estimate - 
which in turn depends on the observations themselves. Thus. the gain matrix KI, and the 
error (co)variances P, and Pi are random, due to the fact that  they depend on the set 
of observations W”. But most importantly is the fact that  neither one of these covariance 
matrices correspond t o  the conditional error (co)variance matrices, but are rather approxi- 
mations to these quantities. The same is true about the estimates w{ and wi provided by 
the extended Kalman filter, that is, they represent only approximations to  the conditional 
mean, in  particular these estimates are only approximately unbiased. Therefore, precisely 
putting it, the extended Kalman filter provides biased state estimates. 

f 
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6.3 An Approach to Parameter Estimation 

In this section we want t o  briefly point out that extensions of the Kalman filter t o  nonlinear 
systems, such as the extended Kalman filter discussed in last section, can be used t o  estimate 
unknown system parameters, even when the dynamics and observation process are linear. 
These parameters can be either related to the dynamics, that  is, t o  the vector function f 
or to  the observation operator h. It is also possible t o  estimate parameters related to the 
statistics of the errors involved in the problem. 

As a simple illustration, consider the discrete-discrete system described by 

w: = \k(O)w:-, + (6.32a) 
W; = HwL + bok (6.32b) 

where the sequence of the noises {b:} and {bi} are as in the previous section Gaussian 
with mean zero and given (co)variances, that  is, b: N N(0,Qk) and bok N N(O,Rk), and 
are mutually uncorrelated. The system (6.32) does not represent the most general form for 
problems of parameter estimation, since we are assuming that  the equations are linear in 
the state variable. Another simplification in the system studied here is that the observation 
function is taken as known, with no parameters t o  be determined to describe it. Also, 
the noises error (co)variances are assumed to be completely known. Even with all these 
simplifications, the system above is sufficient t o  exemplify the main idea of the approach of 
parameter estimation based on the extended Kalman filter. 

In system (6.32) the variable 8 represents an r-vector of constant, but unknown, coefficients 
tha t  we intend to  estimate. Notice from the beginning that the problem of parameter 
estimation is always nonlinear (expect in the case of additive unknown parameters - see 
Jazwinski [84], Section 8.4), making essential the use of nonlinear filter procedures. If we 
imagine that the parameters 8 are functions of time, the fact that they are in reality constant 
can be expressed as 8 = 8; = This equality produces an extra equation that we can 
append to  the system above, t o  augment the state vector, that  is 

u: E ( ;t! ) (6.33) 

where n + r-vector ut is now the redefined state variable. Unfortunately, this procedure 
does not lead to  anything (see Exercise 6.3), in terms of estimating 8. 

To be able to actually estimate 8 through, say, the extended Kalman filter it is necessary to 
treat  the vector of deterministic, constant and unknown parameters as if it were a random 
vector. Thus, we write the equation for the parameters t o  be estimated as 

e: = ei-l + E~ (6.34) 

where Ek is an r-random vector with assumed known statistics, E k  - N(0, S k )  - taken to 
be uncorrelated from the errors bi and bok - system (6.32) can be rewri t ten in the form 
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(6.35 b) 



where f (ui- l )  is defined as 

Let us  assume that initially, at t = t o ,  the estimates wh and 66 are 

with error (colvariance 

(6.36) 

(6.37) 

(6.38) 

Following the extended Kalman filter equations listed in Table 6.2, for the discrete-discrete 
case, we need to calculate the Jacobian of the modified dynamics in (6.35a). That is, 

Then, the forecast step of the extended Kalman filter becomes 

(6.39) 

(6.40a) 

and analysis step becomes 

T 
Kk = P L ( H  0 )  

[( H 0 ) Pi ( H 0 )T + Rx1-l ( 6.4 1 a) 
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Pz = [I - K k (  H 0 )] Pi 

A few comments are pertinent: 

a 

a 

a 

1. 

2. 

3. 

(6.4 1 b) 

(6 .41~)  

It is interesting to mention tha t  this type of application of the extended Kalman filter 
converts the filter into an adaptive filter. This means that,  at each time step the filter 
described above improves upon the knowledge of the parameter vector 8. In other 
words, the system “learns” about itself. 

The technique used here to construct the extended Kalman filter for the parameter 
estimation problem, that is, that  of incorporating the parameter vector into the state 
vector, is known as state augmentation technique. This nomenclature is relatively 
evident, since in the case studied above, the augmented state ui contains the sys- 
tem state vector wi as well as the vector of parameters 8;. State augmentation is a 
very common and powerful technique in estimation theory. Examples in which this 
technique is used are in  problems of smoothing (e.g., Anderson & Moore [l]); colored 
noises, that  is, noises tha t  are not white (Anderson & Moore [l]); more general pa- 
rameter estimation problems, as that of estimating parameters related to the noise 
statistics. Application of these ideas to atmospheric and oceanic da ta  assimilation are 
those of Hao [71] and Hao & Ghil [72]. 

The problem of parameter estimation belongs to  a wider class of problems more com- 
monly referred to  as system identification (e.g., Sage & Melsa [120]). Many alternative 
methods, which do not use concepts related to  the Kalman filter can be found in the 
literature; some identification methods are based on statistics, but not all (see com- 
ments in Gelb [60], pp. 350). 

EXERCISES 

Following the procedure indicated in Section 6.2, derive equation (6.5) for the forecast 
(prediction) error covariance evolution. 

Following the procedure indicated in Section 6.2, derive expression (6.28) for the 
analysis error covariancia. 

Consider the following scalar system: 

where b i  - N ( 0 , a 2 ) ,  and B is an unknown parameter, with an initial estimate of 
e,. Show that  if the parameter 6 is modeled as a deterministic quant,ity the state 
augmentation technique, together with the Kalman filter, give no further information 
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on the unknown parameter 8 ,  as the filter gets iterated in time. In other words, show 
that in this case, the extended Kalman filter can be partitioned as 

and explain why this partition implies nothing is learned about the parameter 8 ,  by 
the filtering procedure. This is an example of a problem known as identifiability, i.e., 
8 is non-identifiable. 

4. Computer Assignment. Consider again the Lorenz (1960) model of Exercise 3.7. We 
want to implement a n  assimilation system based on the extended Kalman filter, and 
a simple modification of it, for this model. Because th i s  is just a simulation, we have 
to  “define the true model”. We take for that the exact same model, that is, 

dwt 
dt 
- -  - f ( W t )  

where f is the Lorenz model of Exercise 3.7, but we choose a different initial condition 
that is taken from a realization of w; = wo + bi,  where 

0.12 
w o  = ( a;;) 

and b; N N(O,P,”) .  with P,“ = (@)’I. Moreover, we make the perfect model as- 
sumption by saying that bi = 0 ,  for all k = 1 , 2 , .  . .. Consequently, Q k  = 0, for all 

Let us choose the initial standard deviation error a: = 0.1, which is ten times larger 
t h a n  t h e  value we used in our Monte Carlo experiments before. To facilitate your 
evaluation of different results to  be obtained below, fix a seed, in  the very beginning 
of the code, for the random number generator of Matlab. 

All experiments that follow are to be performed in the time interval from to  = 0 to  
t j  = 250, and time step At = 0.5, of Exercise 3.7. With the choice of initial error 
given above: 

True state and approximate mean state evolution: Plot the evolution, of all three 
variables, of the true state and those produced by a prediction model based on the 
mean equation, that is, 

k = 1 , 2 . .  . .. 

- dp = f(p) 
dt 

where f is given by the Lorenz model in  Exercise 3.7, for all three variables. Take for 
the initial mean state the value p(0) = wo, given above. Does the “predicted” state 
have any  resemblance with the true state? 

To construct an assimilation system we need an  observation process. which for this 
problem is taken to  be simply 

WE = wL+b; 

‘Lorenz, E.N., 1960: Maximum simplification of dynamiral equations. Tellus, 12. 243-254. 
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for IC = 1 ,2 , .  . .. That is, the observation process is linear, with all three variables of 
the model being observed under noise bok N N(0 ,  R), with R = (&')*I. 
The extended Kalman filter: In all cases below plot the true state evolution against 
the estimate evolution. Also, separately, plot the evolution of the variances for all 
three variables. 

(a) Low frequency update. Taking the observation noise level t o  be go = 0.2, and the 
observation interval to be k o b s  = 50 time units, insert the appropriate equations 
in your Matlab code to perform the analysis step of the extended Kalman filter. 
Notice that,  between two consecutive observations your program should evolve 
the mean and (co)variance just as it did in Exercise 3.7. Observe also, that  in the 
extended Kalman filter the mean equation does not include the bias correction 
term involving the Hessian of the dynamical model. Plot the evolution of the 
mean on the same frame as that for the true state, for all three variables of the 
model. Does assimilation improve the prediction you had in the previous item? 
What do the variance plots tell you? 

(b) More frequent Observations. Reduce the assimilation (observation) interval in the 
experiment of the previous item to half of what it was. How do the estimates 
chance? What  happens if the observation interval is reduces further t o  k o b s  = 10 
time units? 

(c) More accurate observations. The observations considered above are quite lousy 
- the observation error level is about 100% of the value of the amplitude of 
the variables of the system - a more sensible observation error level would 
be considerably smaller. In this way, taking uo = 0.05, repeat the filtering 
experiment of item (a). Comment on how this changes the estimate, and what 
the variance plots tell you. 

The bias correction term: We saw in the experiments in Exercise 3.7 that  the bias 
correction term can have a considerable influence on the evolution of the mean and 
(co)variance. In particular, its presence may allow for error variance saturation, avoid- 
ing indefinite growth of error. Here, we want t o  examine the effect of this term in the 
context of assimilation (filtering). The inclusion of the bias correction term provides 
a second order filter, which is in principle more accurate than the extended Kalman 
filter. Repeat items (a) and (b) above when the bias correction term is included in 
the equation for the evolution of the mean. Compare the results with those found 
previously in (a) and (b). 

Now that you have constructed a small data assimilation system, you might what t o  
change your dynamical model to be a more interesting one, such as the Lorenz (1963)2 
chaotic model. You can use as a guide for some experiments the work of Miller et al. 
(1994)3, where the extended Kalman filter was first applied to that model. Have fun. 

, 

2Lorenz, E.N., 1963: Deterministic non-periodic flow. J .  Atrnos. Sci. ,  20, 130-141. 
3Miller, R.N., M. Ghil, & F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical 

systems. J .  Atmos. Sci. ,  51, 1037-1056. 
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Chapter 7 

Basic Concepts of Atmospheric 
Dynamics 

In this lecture the basic equations that govern atmospheric dynamics are introduced. The 
main goal here is t o  outline the necessary concepts for a better understanding of the problem 
of atmospheric data assimilation to  be treated in the following lectures. Much of the content 
of this lecture can be found in meteorology text books such as: Daley [39], Ghil & Childress 
[62], Haltiner k Williams [70], Holton [82], and Pedlosky [114]. 

In Section 7.1. we introduce the governing equations. In Section 7.2, we make a scale 
analysis of the governing equations for synoptic scale problems, which leads us to  introduce 
the notions of hydrostatic and geostrophic approximations, which are discussed in Section 
7.3. Notions on vertical stratification notion are introduced in Section 7.4. In Section 7.5 we 
solve the equations of motion for the simple in which the atmosphere is approximated by the 
linearized shallow water equations. Finally in Section 7.6. we discretize the shallow-water 
equations using a relatively simple finite difference scheme. 

7.1 Governing Equations 

( I )  Momentum Equation: 

dV 1 
- + v-vv  + 2 R x v  = --vp + g + f at P 

(7.1) 

where v is the  velocity vector of the atmospheric "fluid" in three dimensions, in a rotating 
frame of reference; R is the threedimensional angular velocity vector (velocity with which 
the rotating frame of reference moves): p is the density of the atmospheric "fluid"; p is its 
pressure; g is the gravitational acceleration vector in three dimensions; f represents the 
three-dimensional friction force (e.g. between the atmosphere and the earth surface): and 
V is the gradient vector in three spatial dimensions. 
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(ii) Continuity Equation: 

dP - dt + V . ( p v )  = 0 

This equation means that the rate of change of the local density is equal t o  the negative of 
the (mass) density divergence. It is common to re-write this equation as: 

1 D a  0 ,  
a Dt t v . v  = -- 

where a = l / p  is the specific volume, and the operator D / D t  is formally defined as: 

(7.3) 

(iii) First Law of Thermodynamics: 

This law states that the change in internal energy of the system is equal to the difference 
between the heat added to  the system and the work done by the system. For the atmosphere, 
the first law of thermodynamics translates into: 

(7.5) 

where e is the specific internal energy, which is only a function of the temperature T of the 
system, and Q is the heat per unit of mass. I t  is worth noticing that the temperature is a 
function of the space variables, as well as of time. 

Introducing the specific heat at constant volume for the dry air c, E e/T,  we have that  

DT DO 
Dt Dt 

c,- = - p -  + Q .  

where T is the temperature of the system. 

In this lecture, we refer very little t o  the  thermodynamics equation and therefore the equa- 
tions above are sufficient. 

7.2 Scales of the Equations of Motion 

In spherical coordinates (A ,  9, z )  the three components of the momentum equation (New- 
ton’s equations) can be written as (e.g., Washington & Parkinson [138]): 

+ fv - pw + f x  du u v t a n v  uw 1 dP 
dt r + T = p r c o s q d x  
dv u 2 t a n q  vw 
dt r + T- = p r a v  

(7.7) 

(7.8) 

_ -  

d p  - f. + fq _ _  

(7.9) 
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Table 7.1: Definition of the scale parameters 
horizontal velocities 
vertical velocities 
length (horizontal; 1/27r wave length) 

horizontal pressure fluctuations 

U - 10 m/s 
W - 1 cm/s  
L - lo6 m 
~ - 1 0 ~ ~  depth (vertical) 
A P / p  - lo3 rn2/s2 
L/U - 105 t ime 

T where we use the definitions v (u, w, w) and f z ( fx ,  fp,  f z ) T ,  and we notice that 

d d 
- - - + v * v  
d t  - dt  

- 

u d v d  d 
dt  r cosydA r d y  dz 

+ -- + w-. - - -+-- a 

The parameters f and f are defined as: 

f = 2Rsinq  
f = 2Qcosq 

(7.10) 

(7.11) 

(7.12) 
(7.13) 

where f is known as the Coriolis parameter, and R is the magnitude of the vector 0. 
Moreover, r = a + z ,  with a representing the radius of the earth and z the height, starting 
from the surface. 

In  th i s  lecture, we are interested in synoptic scale dynamics, and therefore we introduce 
scale variables that refer to  synoptic atmospheric systems as in Table 7.2 (see Holton 1979: 
p. 36 for more details). In particular, notice that the  time scale is on the order of days; 
th i s  scale is called advective time scale, where pressure systems move approximately with 
the horizontal winds. 

Disregarding the friction force f from this point on, we can proceed with the scale analysis 
of the equations (7.7)-(7.9), noticing that a n  estimate of the scale of the Coriolis parameter 
can be obtained for the mid-latitude y = 9 0  = 45" as: 

[f = [f] = fo = 2Rsinqo = 2Rcosyo 

= 2 (-) 2a COS(45") 10-4, 
86164 

(7.14) 

(7.15) 

where the notation [.I is used to  indicate the  scale of the quantity between the curly brackets. 

The requirement of synoptic dynamics imposes a restriction in the horizontal direction. 
To define scales in the vertical direction it is necessary to  establish at what height we are 
interested in describing the atmosphere. For tropospheric dynamics, the pressure gradient 
can be represented by the scale defined by Po/H,  where Po (w 1000 mb = 1 atm) is the 
pressure at the surface and H is the troposphere depth introduced above. 

Table 7.2 shows the results of the scale analysis, where the magnitude of each term in the 
equations (7.7)-(7.9) is indicated. We see directly from the table that the horizontal and 
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Table 7.2: Scale analvsis of the comDonents of the momentum eauation 
Horizontal scale analysis 

meridional 

scales 

[tl Lf.1 u2 tan [?I [ f “1 
A P  
PL 

magnitude (m/s2)  lo-* 10-3 

Vertical scale analysis 

magnitude (m/s2)  10-5 10 

vertical scales are independent. This fact is exactly what  allows us  to  distinguish between 
horizontal and vertical motion as approximately separate entities. 

7.3 Geostrophic and Hydrostatic Approximations 

The scale analysis of the momentum equations in the horizontal direction shows that 
synoptic dynamics are dominated by the Coriolis term and by the pressure gradient term. 
In th i s  way, to  first order the horizontal equations can be approximated by 

1 8P fv M -- 
P dX 
1 8P -fu M -- 
P 89 

(7.16) 

(7.17) 

This approximation motivates us  t o  define the so-called geostrophic winds as those satisfying 
exactly the relation: 

vg E k x -Vp (7.18) 
1 

f P  
where k is the unit vector in vertical direction. 

The table 7.2 also indicates that a reasonable simplification of the vertical component of 
the momentum equation is 

(7.19) 



meaning that the pressure field is nearly in hydrostatic balance. In other words, the pressure 
at  a point is approximately equal to the weight of the air column above the point. In the 
same way that we were motivated to  introduce geostrophic winds, we can define a standard 
pressure p as the one that  follows exactly the hydrostatic relation: 

(7.20) 

where p is a standard density. Notice that,  by simplifying the vertical component of the 
momentum equation the vertical winds disappear. This means that at synoptic scales these 
winds are negligible. 

7.4 Vertical Stratification 

Let us examine the hydrostatic approximation introduced in the previous section in more 
detail. Since gp > 0, the pressure p monotonically decreases with the height z .  Moreover, 
within the tropospheric layer g x const., which means that given a density function p = 
p ( z ,  p ) ,  the hydrostatic approximation 

= - S P ,  
dP - 
d z  

when satisfied exactly, provides a model for the vertical atmosphere. 

(7.21) 

A simple atmospheric model, one called homogeneous. is that for which the density p = p 
is constant (independent of height and pressure). In this case, 

p = p - g p ( z  - z )  , (7.22) 

where the qiiantities with a bar are standard quantities, defined generally at sea level. 

A more realistic model, not homogeneous, is found when we consider the atmosphere as an 
ideal gas. In this case, the pressure and density are related by the ideal gas law. 

P - = R T ,  
P 

where T is t h c  temperature and R is the gas constant for the dry air. 

In this way, the hydrostatic balance can be written as: 

dP - 9 dz 
p R T ~  - r z  
- - 

(7.23) 

(7.24) 

where we use the fact that in  the troposphere the rate of temperature decrease is approx- 
imately constant: d T / d z  = -r, for r being the lapse rate, and To the temperature of a n  
isothermal atmosphere. 

One of the conventional ways of taking measurements of the atmosphere is by means of 
balloons. They usually measure the temperature, pressure and wind. That  is, the temper- 
ature and wind are functions of pressure, in  particular T = T ( p ) .  The hydrostatic relation, 
written as: 
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can be used to  obtain the temperature, pressure and density profiles as functions of the 
height. This information can then be used in the solution of the governing equations. 

In fact, we can simplify this transformation procedure by introducing pressure as the vertical 
coordinate, instead of the height z. By defining the geopotential function 4 E g z ,  the 
hydrostatic equation becomes: 

dc$ RT - - - -- 
dP P 

(7.26) 

The governing equations can be written using pressure as the vertical coordinate (e.g., 
Haltiner & Williams [70], Section 1.9). 

7.5 Linearized Shallow-Water Equations 

The system of shallow-water equations, in Cartesian coordinates, can be written as: 

du du du dh 
- + u - + $ - - f v + g -  = 0 d t  dx dy dX 
av dv  dv dh 
- + U - + $ - + f u + g -  = 0 
at dx dy dY 

(7.27a) 

(7.27 b) 

(7 .27~)  

where x and y indicate the zonal and meridional directions, respectively, and we consider 
the Coriolis paramctcr f = fo to  be constant. The boundary conditions that interest u s  at 
this moment are periodic in both directions and the extent of the domain is taken as 2xa, 
where a is the radius of the earth. 

A simple linearization that we can use for the system above, with relevant meaning, is when 
the reference state (or basic state) consists of a null winds, i.e., state of rest, and of a free 
surface height, i.e., independent of space and time. That means, the basic state is defined 
as: 

u = o + u ’  
v = o + v ’  
h = H + h ’  

(7.28a) 
(7.28b) 
(7.28~) 

where H = const. e ( . ) I  is used to  indicate perturbations. In this case, the equations 
(7.27a)-(7.27~) are reduced t o  the equations 

d U  84 
d t  d X  
dV 84 

84 du dv - + a ( - + - )  = 0 ax dy dt  

fov+- = 0 - _  

-+feu+- d t  dY = 0 

(7.29a) 

(7.29 b) 

(7.29~) 

where we eliminate the notation ( e ) ’  so that u,v  and 4 in the system of equations above 
refer to  perturbations; moreover, we introduce the basic geopotential height @ = g H  and 
its correspondent perturbation 4 = gh. 
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One of the ways t o  solve the equations above is to  introduce the stream function ?+!I and the 
potential velocity x by means of the Helmholtz theorem: 

all, ax 
a y  ax u = -- + -  

'u = - + -  a$ ax 
a x  a y  

from where it follows that 

2 a v  au V $  
ax a y  

2 au av v x  = - + -  ax a y  

(7.30a) 

(7.30b) 

(7.31a) 

(7.31b) 

Then, the equations (7.27a) and (7.27b) can be transformed into equations for the relative 
vorticity and divergence: 

+ fOO2X = 0 

fOV2$ + 024 = 0 ,  

8V2$ 
at 

av2x - -  
at 

(7.32a) 

(7.32 b) 

where V2+ is the vertical component of relative vorticity, and V2x is the divergence (see 
Holton [82] pp. 73, 83-86 for more details). Using (7.30a) and (7.30b) we can re-write the 
equation for the perturbation geopotential height as: 

(7.33) 

The expressions (7.32)-(7.33) form a system of coupled, constant-coefficient, linear partial 
differential equations, which can be solved by normal mode expansion (i.e., Fourier series). 

In this way we write: 

(7.34) 

where m is the zonal wave number, n is the meridional wave number, i = a, and the 
constant k is given by 

Then, we see that 

(m2 + n2)+ I C =  
a": 

fo2 

2 fo2 v x  = --kx 

V2$ = --k$ 
@ 

Q, 

(7.35) 

(7.36a) 

(7.36b) 

(7 .36~)  
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Therefore, substituting (7.34) and (7.36) in equations (7.32)-(7.33) we obtain: 

These equations can be written in compact form, 

where the vector i+ F ( 4 , k ,  and the matrix e is given by 

L =  

(7.37a) 

(7.37b) 

(7.37c) 

(7.38) 

(7.39) 

The solution of equation (7.38) is 

where i + ( O )  represents the initial condition vector. This expression can be written in a 
more convenient way if we expand the vector G(0) in terms of the eigenvectors of 2. These 
eigenvectors can be determined by solving the equation: 

(2 - aJ)+ = 0 (7.41) 

where be refers t o  the eigenvalue corresponding to  the eigenvector +t, and I represents the 
3 x 3 identity matrix. Notice that writing the solution as in (7.34) produces a matrix 2 
which is real and symmetric. 

It is simple t o  show that the eigenvalues of the matrix 2 are determined by solving the 
characteristic equation, 

a; - (1 + k ) g t  = 0 (7.42) 

whose solutions can be written as: E {uE = - J m , a ~  = O,a& = + d m } ,  and the 
subscripts R and G indicate frequencies of rational and gravity waves, respectively. The 
eigenvectors corresponding to  the eigenvalues above can be obtained by substituting each 
value of a in (7.41). In this way, we can build a matrix %' whose columns correspond to  the 
eigenvectors i r e  of the problem of 2. That is, 

A 

(7.43) 
1 

-4 
where the first and third columns of 3 correspond to  the eigenvalues a; and the middle 
column corresponds t o  the eigenvalue OR. It is easy t o  verify that the column vectors form a 
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complete orthonormal set of eigenvectors and therefore the matrix 9 is unitary: GT = 9-l. 

Moreover, the matrix 9 is the one that  diagonalizes the matrix e: 

+ where A is a diagonal matrix whose element,s are the respective eigenvalues: A = diag(aa ,  OR, aG) 

Returning to  the solution, (7.40), we write the expansion of the initial vector by utilizing 
the eigenvectors o f t  as 

+(o) = Ci.e+e (7.45) 
e 

and noticing that the eigenvectors of e-'foit are the same as those of i, with eigenvalues 
einlt,  we have 

+(t) = te+eeiult . (7.46) 
e 

Once the initial condition is known +(O) = (q5(0) , ( (0) ,4(O))T,  the expression (7.45) can be 
inverted to obtain the expansion coefficients Q .  Therefore, using the fact that  the matrix 
9 is unitary we have 

i: = iTT*(0) (7.47) 

where we define i: E (L,  Eo, ?+)T. 

7.6 Numerical Solution: A Finite Difference Method 

In general, there are n o  analytic solutions for the system of governing equations, including 
the thermodynamic processes. Therefore, these equations are solved numerically in some 
way (e.g., Haltiner & Williams [70]) with computer assistance. In this section we will 
exemplify a practical way of solving the governing equations by means of applying a finite 
difference scheme t o  a simple set of equations. 

Consider the system of two-dimensional shallow-water equations, on a P-plane, linearized 
about a basic state with zero meridional wind v 0, and constant zonal wind u = U (see 
Exercise 6.2, for a guide to the derivation of these equations): 

du du 84 ~ + + ~ + & - ( f - u g ) u  = 0 ,  
dv av a4 
-++-+-++u = 0 ,  at ax ay 

a4 a4 du au 
-++-++( -+- )+Q,gv  = 0 ,  at ax ax ay 

(7.48a) 

(7.48b) 

(7 .48~)  

where u, u are the perturbations in the velocity field, 4 is the perturbation in the geopo- 
tential field, f = fo + Py is the Coriolis parameter, and the basic state satisfies: 

dQ, 
f U + -  = 0 :  

dY 
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and the equations are applied to a doubly periodic domain. 

The system of equations (7.48) can be written in vector form as 

dw d d - + - (Aw)  + - (Bw) + C W  = 0 ,  
at ax dY 

(7.50) 

where w = (u, v, q5)T, as in the previous section, and the matrices A, B e C are given by 

u o 1  

B = ( i  1 i ) ,  
0 -f 0 

(7.5 1 a) 

(7.51b) 

(7.51~) 

Notice that these matrices depend on the variable y, since the geopotential function of the 
basic state and the Coriolis parameter f are functions of the latitude. 

Let us  apply the Richtmyer two step-version of the Lax-Wendroff finite difference scheme 
(see Richtmyer & Morton [117]; Chi1 et ai. [66]; and Parrish & Cohn [113]). For that 
we consider the 3-vector w ( x , g , t )  to  be in a two-dimensional uniform grid 1 x J whose 
approximate value at a point is given by 

w ( x ~ ,  yj, t k )  = W$ % ~ [ ( i  - l ) A z ,  ( j  - l )Ay ,  kAt] , (7.52) 

with i = 1,. . . , I ,  j = 1,. . ., J ,  k = 0 , 1 , ,  .., and Ax = L Z / 1 ,  Ay = L , / ( J  - l),  for L,, L ,  
representing the extension of the rectangular domain in the zonal and meridional directions, 
respectively. 

The Richtmyer version of the Lax-Wendroff scheme has the form of a predictor-corrector 
scheme for which the first step, the predictor, can be written as: 

(7.53) 

for i = 1 , 2 , .  . ., I e j = 1 , 2 , .  . ., J - 1, where the operator Lj is defined by 

with Ax E At/Ax , A, G At/Ay, and we notice that C does not depend on y. The second 
order operators of spatial mean and difference are defined as: 

( 7.55a) 

(7.55 b) 
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(7.56a) 

(7.56 b) 

The second step of this finite difference scheme, the corrector step, serves to  propagate the 
state from the half-grid intermediate points t o  the full-grid points, that is, 

(7.57) 

for i = 1 , 2 , .  . ., Z and j = 1 , 2 , .  . ., J .  

The periodic boundary conditions in the East-West direction as well as in  the North-South 
direction can be taken into consideration by doing: 

f o r i =  1 , 2 , - . . , Z ,  and 

(7.58 a) 

(7.58 b) 

(7.59a) 
(7.59 b) 

for j = 1 , 2 , - . . , J  

Although it is not necessary, and in general cannot be done in implementation of numeric 
methods for practical problems in meteorology, we can combine the expressions (7.53) and 
(7.57) to write the finite difference system of equations in the following, more compact, form 

Wk+l = *Wk, (7.60) 

where \k is the transition matrix of the system, also called the dynamics matrix. By 
writing the system of equations in this form it becomes easy to understand the connection 
between the problems studied in the previous lectures and the problem of assimilation of 
meteorological data  to  be studied below. 

In any event, we can illustrate the morphology of t,he transition matrix by considering a n  
idealized grid with resolution 4 x 5. The two stages (7.53) and (7.57) of the finite difference 
scheme can be combined as 

w,k:l = 1 k 2 k  3 k  
Qjwi-1,j-1 + QjWi,j-1 + Qjwi+l,j-~ + 
Qjwi-1,j + Q?wtj + Q:wf+,,j + 4 k  

Qjwi-l,j+I 7 k  + Qjwi,j+l 8 k  + Q ? ~ f + l , j + l >  (7.61) 

where the matrices Q have dimension 3 x 3, and consist of linear combinations of the 
matrices A , B  and C, calculated a t  a specific grid points. Explicit form for the auxiliary 
matrices Q can be found in Parrish & Cohn [113], with an appropriate modification due t o  
different boundary conditions. A simplified version of (7.61) is treated here in the exercises. 
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Figure 7.1: Morphology of the dynamics for the discretized system of o shallow-water 
equations, with the Richtmyer version of the Lax-Wendroff finite difference scheme on a 
4 x 5 resolution grid. 

From the expression (7.61) we see that the state vector at a grid point is determined by a 
combination of the values at 8 adjacent grid points and the value at the same point in the 
previous step. The matrices Q are then blocks within the dynamics matrix \k which, for a 
4 x 5 grid has the form displayed in Fig. 7.1 . 

EXERCISES 

1. (Daley [39], Problem 6.1) Show that the eigenvectors of the operator i in Section 6.5, 
given by the columns of the matrix 9, are orthogonal. Show also that the matrix 
is unitary, that is, it satisfies QT = Q-'. 

2. Derive the shallow-water systems of equations. Starting from Newton's equations 
(7.1) without external forcing, that  is, for f = 0 ,  and considering a Cartesian coordinate 
system, show that the explicit form of (7.1) is 

d u  d u  du d U  1 dP - + u - + v - + w - - f v  = 
a t  d x  dy d z  P 
av a v  dv dV 1 dP 
- + u - + v - + w - +  fu = 
a t  a x  dy a z  P dY 

- + u - t v - + w -  aw aw dw dW - - 1 d P  - 
dt  a x  a y  8.2 P dY 

where x ,  y and z indicate the zonal, meridional, and vertical directions, respectively, 
v = (u ,  v, w ) ~ ,  and g = gk for k representing a uni t  vector in the vertical direction. 

(a) Assuming hydrostatic balance, and a homogeneous atmosphere, in which p = 
po = const., p = po = const., and 2 = h ( x , y , t ) ,  show that the horizontal 
pressure gradient is independent of the vertical coordinate z .  

(b) Performing a scale analysis in the equations for u and Y above, show that these 
can be reduced t o  

au a+ du dh - + + - + v - - f v  = 
a t  ax dy -gdz 



3. 

4. 

dv dw dw dh 
- + u - + w - +  f. = -9- 
d t  dz dy dY 

(7.62) 

Considering now the equation for the vertical velocity w, and remembering that 
we are assuming hydrostatic balance, show by scale analysis considerations that  
this equation can be reduced to 

aw aw dW 
d X  dY dz 

u- + w- + w- = o  

Noticing that ,  due to  the results of item (b), the horizontal quantities do not de- 
pend on z ,  integrate the equation for w, obtained in the previous item, imposing 
the following boundary conditions: 

w(2, Yr 2, t )  = 0 
w ( z ,  y, z ,  t )  = 0 

n a  superficie, onde z = hi($,  y) 

no top0 d a  atmosfera, onde z = h ( z ,  y, t )  

Hence, show that the vertical equation reduces to  

ah, - +  at 
d[u(h - h,)] + d[w(h - h,)] = o  

d X  dY 
for the height of the atmosphere. 

Assuming the absence of topography, show that the shallow water system of equations 
obtained in the previous problem, linearized about the following basic state: 

u = U(y)  + ut 
w = o + v '  
h = H ( y )  + h' 

and with f = fo + By, reduces to: 

dU'  ~ U I  a+/ - + u- + --  (f -Uy)v'  = 0 

dV' dw' 84' 
- + u - +  -+ fu' = 0 dt  dx dy 

at dx ax 

where we introduced the geopotential height for the basic state as 
sponding perturbation as 4' = gh' and 

= g H ,  its corre- 

fU + 4jy = 0 

Here, the subscript y indicates derivation with respect to  the variable y. 

Defining the total energy of the system governed by the linear shallow-water equa- 
tions, obtained in the previous problem, as 
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where u, v and q5 refer to perturbation fields, show that 

dE 
- d t  = - 1 / @UYuv dx d y  

where the integrals extend through the whole ( 2 ,  y) plane. Interpret the case U(y) = 
UO = const.. 

5 .  (Cohn [30], Ghil et al. [SS]) Let us apply the finite difference scheme of Section 6.6 to 
the one dimensional shallow-water system of equations: 

ad du' dq5' -++-+--fv' = 0 at ax a x  
d V '  dV' 
- +u-+  fu' = 0 d t  dX 

ad' aqs 8.21' 
- + U--+@ly- - fouv' = 0 at a x  dX 

where U ,  fo, e are constants. In th is  case: 

(a) Write the system's equations in flux form, that is, 

obtaining explicit expressions for A and C. 
(b) Show that  the second step of the Lax-Wendroff scheme can be written as: 

f o r i = 1 , 2 , . . . , I 1 a n d  A =  A t J A x .  
(c) Show that the first step of the Lax-Wendroff scheme can be written as: 

k+1/2 - -(I 1 - -C)(W;" At + w:+~) - -A(w:+, x - w;") 2 2 
W. %+I12 - 2 

f o r i =  1 , 2 , . . . , I  . 

transformation i + i - 1 in item (c), show that 
(d) Substituting this result into item (b), as well as the result obtained via the 

Wf+l  = Q-Iw;~?: + Qow;~" + Q+iw;"," 

where 
A t  A t  

Qo = I - X2A2 - -C(I- 2 -C) 2 

and 
x x2 AAt A t  At 
2 2 4 4 2 

Q*i = 7 - A  + -A2 f -(AC+ CA) - -C(I- -C) 

(e) Indicate the morphology of the one-time step transition matrix. 
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Chapter 8 

Atmospheric Data Assimilation: 
Conventional Methods 

8.1 History 

In this section we give a short review of the history of conventional atmospheric data assim- 
ilation methods. More detailed reviews can be found in Daley [39], in Ghil & Malanotte- 
Rizzoli [64], and in Harms et al. We call conventional methods the assimilation 
schemes currently used in operational centers, as for example at the National Centers for 
Environmental Prediction (NCEP'); Parrish & Derber [112]) in the United States and the 
European Centre for Medium-Range Weather Forecasts (ECMWF; Heckley et al. [74]), in 
England. 

[73]. 

Weather forecasting started after the invention of synoptic charts (meteorological maps). 
Nowadays, data analysis by synoptic charts is known as subjective analysis, since these 
were designed by hand, and consequently were subjected to  empiricism and skill. These 
charts are built by marking the magnitude of a n  observed quantity, in the locations where 
observations are made, on an ordinary geographic map, and by tracing contours between 
the marked points. Visual extrapolation and interpolation are made in order to allow 
for contours drawing. From these charts, many atmospheric conditions can be inferred, 
including conditions about variables not directly observed, by applying a series of rules based 
on geometric arguments (Bjerkenes [14]; see also Saucier [122] for a detailed explanation of 
these procedures). A meteorologist with great experience can then issue forecasts for one 
or two days based on these charts. 

The advent of computers and the evolution of numerical analysis methods introduced a 
more rapid and consistent way of generating synoptic charts. The first objective analysis, as 
it was called, was produced by Panofsky [lll]. He used a technique of fit by least squares in  
two dimensions. This technique consists basically in  expanding the fields (variables), which 
are to be analyzed, in a series of polynomials about the observation point, minimizing the 

'Old Nat,ional Meteorologkal Center 
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square of their differences with the observed values. The expansion coefficients are then 
determined by inverting a matrix. 

Furthermore, the availability of computers contributed t o  the arrival of a new area of re- 
search in the beginning of the 40’s. Led by the great John von Neumann at the Institute 
of Advanced Studies in Princeton, a prominent group of meteorologists initiated what was 
later called numerical weather prediction (NWP). Initiated in the end of the 40’s, in a rich 
collaborative environment that continued until the mid-50’s, as described by Wiin-Neilsen 
[139], the first weather prediction was performed by Charney, Fjerrtoft & Neumann [23]. 
This prediction was based on the numerical integration of the barotropic vorticity equation, 
as proposed by Charney. 

The work of Panofsky [111] in objective analysis was motivated by the Princeton project 
and executed there. This procedure was perfected by ideas such as those of Bergth6rsson & 
DOOs [ll], who used a numerical forecasts as the first guess to  the analyzed field. This led to  
the successive corrections method t h a t  represents considerable computational improvement 
over the polynomial fit method. As described in Lorenc et al. [96], an improved version of 
this  method is used today, and is called analysis correction, at the British forecast center 
(U.K. Meteorological Office). 

The work of Eliassen [49], Gandin [57], Eddy [45,46], and Phillips [116] introduced statistical 
interpolation ideas to  atmospheric science problems. This procedure is analogous t o  the 
successive corrections procedure in the sense that the analyzed variable, w;, at a point j ,  is 
still obtained by means of a linear combination between the forecast field wJ/ (here we use 
f for forecast), at the same point, and the increment (innovation) due to  the observation 
at this point, according to  the expression 

W; = w$ + kT(w” - Hwf) (8.1) 
where w0 is a m-vector representing m observations and the m x n matrix H corresponds 
to  necessary interpolations in order to transfer information from the forecast n-vector wf , 
usually obtained on a regular grid, t o  the observation places. Analysis methods based 
on (8.1) are said to  be univariate, since observations of a certain quantity corrects only 
equivalent quantities. That is, we can identify the vector w as being the temperature, so 
that the use of (8.1) does not affect the winds, but the temperature field alone. 

The quantities k j  above are the weights given t o  the observation increments. These can 
be determined based on what  we saw in the initial lectures using statistical concepts. For 
example, they can be determined by imposing the condition that the ensemble mean of the 
difference between the analysis and the true value of the analyzed quantity be minimum. 
In the method of least squares, the quantity to  be minimized is a measure of Euclidean 
distance between the exact value and its estimate, whose solution produces an expression 
for the weights in (8.1), 

where Sf and R correspond t o  the forecast and observation error covariance matrices; s$ is 
a j t h  column of the forecast error covariance matrix. 

[HSfHT + R]k j  = S$ (8.2) 

Physical constraints were incorporated into statistical analysis by Gandin [57] and applied 
t o  operational data assimilation systems by McPherson et al. [lo21 and Lorenc [95]. These 
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constraints are taken into consideration by means of a n  extension of the univariate form, 
briefly described above, for the multivariate case. l n  this last case, the analyzed state at 
a point is built as a combination of information about various variables in distinct points. 
For example, the forecast and anal sis vectors above can be redefined to include winds and 
the mass fields, as wig" where u and w represent the two components 
of the wind in the zonal and meriodional directions, and. h represents the mass field. The 
calculation of the weights k, is accomplished by following a n  expression similar to  (8.2), 
except that  now, the forecast error covariance matrix Sf contains terms of cross-covariances 
related t o  the cross-correlations among different variables. Therefore, the matrices in  (8.2) 
are of larger dimension than in that of the univariate case. Therefore, the inclusion of 
physical constraints results in a computationally more intensive system of equations to be 
solved to produce a n  analysis. 

( u ; ' ~ ,  t$, 

To solve the system of equations (8.2), we assume the statistical properties of the forecast 
errors is known, that is. that the matrix S/ is known. In fact, this matrix is prescribed 
based on assumptions such as vertical separability and horizontal homogeneity and isotropy 
of error correlations. Observational studies such as those of Rutherford [119] and Schlat- 
ter [123], based on differences of observed and climatological forecast fields are designed 
to  determine the statistics of forecast errors. Analytical expressions can be derived to pa- 
rameterize error statistics, and the study of Ralgovind et al. [6] (see Exercise 8.3) justifies 
some of these parameterizations by using a univariate model based on the quasi-geostrophic 
potential vorticity equation. 

Both methods of univariate and multivariate statistical interpolation or, as more commonly 
known, optimal interpolation, are used nowadays in forecast centers such as NCEP and 
ECMWF. In some of its applications, forecast errors variances are taken as a function of a 
linear growth parameter, while the correlation fields are prescribed in an analytical form, 
by imposing geostrophic balance for the error fields (Schlatter et al. [124]), as the physical 
con strain t . 

As we mentioned previously, the major part of the computational load in optimal interpola- 
tion is primarily due to  the matrix inversion in (8.2); for regions with high da ta  density, this 
matrix can have a very large dimension. Defining a region of influence, to produce an ana- 
lyzed variable a t  a certain point taking into consideration observations within a radius on  
influence only is one attempt to  reduce the computational cost (Lorenc [95]). This technique 
is known as data selection, and in some cases it has unpleasant consequences (da Silva et al. 
[37]). Another technique. known as superobing, substitutes various observations occurring 
in nearby locations by a single observation, as for example, the mean of all the observations, 
with modified standard deviation. Superobing reduces the number of observations included 
in (8.2) (see Lorenc [95]). 

Another factor responsible for high computational cost in operational analysis systems is 
the need for quality control of the data. Quality control systems are developed in order 
to  eliminate and/or correct observations with gross errors, which are introduced by artifi- 
cial means, distinct from the measurement process itself, such as data  corruption due to 
transmission via the telecommunication network. The study of Hollingsworth et al. [80] 
shows tha t  the final analysis result is very sensitive to quality control procedures. Other 
approaches to the quality control problem are found in the work of Lorenc & Hammon [97] 
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and Gandin [58]. 

The greatest disadvantage of the optimal interpolation method is that  the forecast error 
covariance is prescribed in a relatively arbitrary manner. Although the errors possess dy- 
namic balance, the dynamic balance is not exactly satisfied by the governing equations, 
moreover these errors do  not propagate in any way. Explicit use of the governing equations 
to derive error statistics is the main context of advanced methods for data  assimilation, t o  
be discussed in the following lecture. Among other things, the advanced methods produce 
error statistics with appropriate balance. 

8.2 Initialization 

Intialization is the procedure by which gravity waves are filtered out from the initial con- 
ditions to  allow for an evolution practically free of fast components. We say practically 
because in the general nonlinear case, the evolution of the initialized state (after initial- 
ization has been performed) still contains allows for fast components of the system to be 
excited, since the all modes interact due to  nonlinearity. For the linear case, however, 
various initialization procedures exist and consist of the motivation for extensions to the 
nonlinear case. 

Initialization is not a data  assimilation method, however, it is a fundamental ingredient 
for atmospheric forecast obtained through computer models. The majority of assimilation 
methods used operationally use some type of initialization method for the fields to  be used 
as initial condition in the forecast model. It is worth saying that  the need to initialize the 
analyzed fields, that  is, fields obtained after after the assimilation of observations, could 
be, in  some cases, eliminated if the assimilation procedure was done “correctly”. In other 
words, referring to the existing balance due to dynamical processes, it is possible, in some 
cases, to  produce analyzed fields which are automatically balanced, without u s  having to use 
an explicit initialization procedure. The  word “correct” used above, refers t o  assimilation 
schemes in which the initialization procedure is embedded in its structure. This will become 
more clear as we progress. It is good to underline that we are referring only to  balances due 
to  dynamic processes, such as geostrophic balance; balances due to  physical processes, such 
as heat exchange in the atmospheric system, are much more complicated to incorporate 
automatically in data assimilation procedure. The major part of this topic goes beyond 
what we intend to cover in these lectures, and we will see in the following sections only 
superficially what we have just mentioned. 

One way of describing the initialization problem is to  imagine that in the solution space 
of the equations that  govern atmospheric motion there exists a subspace of slow solutions 
called S,  which is free of high frequency waves (gravity waves - with potential to destroy 
possible weather forecasts). In fact, there are various definitions for what it is understood 
for the slow subspace (slow manifold; see Boyd [17]) but we will not go into these details in 
what follows. Initialization can be seen as the process of projecting, in some way, a general 
s ta te  represented by the n-vector wa, a t  a specific time, onto this slow manifold. Through 
concepts of linear algebra, we know that there is a matrix (operator) of projection n, of 
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dimension n x n,  which satisfies the following conditions 

R a n g e n  = S, 
ITz = n ,  

= En, 

(8.3a) 
(8.3b) 
(8.3c) 

(e.g., Halmos [69], Section 75). This matrix is known as the E-orthogonal projection matrix 
onto S, or simply the orthogonal projection in when E is the identity matrix. Here, E is 
assumed to be positive definite and symmetric. 

Let Vs be a n  n x n,s matrix, with columns built from the slow eigenvectors of a dynamical 
system, that is, the slow normal modes which total n S .  Hence, the E-orthogonal projector 
is given by: 

II = Vs (V;EVs)-l VgE, (8.4) 

which can be verified by substitution in  the conditions (8.3). 

Making use of th is  projector we can describe the initialization problem as a least squares 
problem: find the n-vector wi in S that, is as close as possible to the general vector w". In 
other words, we want to minimize the following functional 

q = (wi - w " ) ~ E ( w ~  - w") (8.5) 

where E is a symmetric and positive definite weight, or re-scaling, matrix. As we will show, 
the soliit,ion of t h i s  problem is, as we can expect, given uniquely by 

Posed in th i s  way, the initialization problem is know as linear variational normal mode 
initialization (e.g., Daley [40], Temperton [127]). 

To prove the result above, notice that certainly w' E nw" E S. Moreover, a general 
element of S can be written as 

w = W i + €  = IIw" + €  (8.7) 

where 
c=nc, 

since E = w - wi should be in S. Now, 

q = ~ ( w )  = (W - w " ) ~ E ( w  - w") 
= 
= 

[(It - 1 ) ~ "  + cITE [(n - I)w" + E] 

[(11 - I ) w " ] ~  E [(II - I)w"] + E ~ E C  + 26 , 

where 

S = eTE(II-I)wa 
= ( IIE)~E(II  - I)w", (8.10) 
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according to (8.8). Based on ( 8 . 3 ~ )  and on the fact that  ET = E it follows that 

6 = tTIITE(II-I)wa 
= c ~ ( E I I ) ~ ( I I  - 1)w' 
= tTEII(II - I)wa 
= eTE(II2 - n ) w "  
= 0 ,  (8.11) 

where (8.3b) was used to obtain the last equality. By (8.9) we have 

q(w) = (wi - W " ) ~ E ( W ;  - w") + cTEt 
= q ( ~ ' ) + + ~ E t  
2 .I(wi), (8.12) 

where the equality prevails if and only if t = 0, since E is positive defined. Hence, wi = IIw" 
is the unique minimizer. 

As a n  example of the initialization procedure, we follow Daley [39] and consider the system 
of shallow water equations linearized about the state of rest and dealt with here earlier 
in Section 6.5. For that ,  we introduce first an operator F corresponding to  the Fourier 
transform in two spatial dimensions. Thus, formally a vector w(x, y, t )  can be transformed 
according to 

*(k e,  4 = F[w(x, Y, 41 (8.13) 

The  Fourier operator F-' "=" F* which correspond t o  the inverse Fourier transform is such 
tha t  

w(5, Y, t )  = F*[w(k 4 41 (8.14) 

where * indicates the conjugate transpose of an operator. Consequently, we can write the 
matrix 3 s  from the previous lecture as, 

3 s  3 F[Vs] (8.15) 

Furthermore, we define the Fourier component 6 of the matrix E above as: 

E F ( F * E ) ~  (8.16) 

Then, formally again, by inserting the appropriate identity in expression (8.4) for the pro- 
jector II we have 

where 

(8.17) 

(8.18) 
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Explicitly, we recall that ,  in  the Fourier space, the solution of the system of shallow water 
equations in time t is given by 

c-eifl-to 0 
W(t) = q A ( t )  = 9 (8.19) 

where 9 is the eigenvector matrix in (7.43), which for convenience we write as in Daley 
[39] : 

(8.20) 

and where the  coefficients E = (e- ,  Eo, i.+)T can be determined from the initial condition, 
as in (7.47), and which we repeat for ease of reference once again: 

(8.21) 

for W(O) = [@(o) ,  i a ( 0 ) ,  4+(0)lT, a general initial state, meaning an analysis. 

Therefore, according t o  (8.21) and (8.19), if a general initial condition has fast components, 
the solution for all times t k  will also have fast components unless the coefficients 2- and 6+ 
are zero. T h e  goal of the initialization procedure is to  reconstruct the initial state w"(0) 
as a (initialized) state i+ ' (O)  [ ~ i ( 0 ) r ~ ' ( O ) r ~ ( O ) ] T 1  free of fast components, so that its 
evolution (8.19) is also free of fast (gravity) waves. 

Moreover, in the case of simple linear systems, the slow subspace coincides with the geostrophic 
space (rotational), and the "matrix" Vs of slow eigenvectors is given by 

(8.22) 

for a number ns = 1 of slow vectors. 

Choosing the  weighting matrix k as a diagonal matrix (in Fourier space) and representing 

it by k = diag(w+, w,, w4) the kernel ($gEqs)-* of the E-orthogonal projector can then 
be calculated according to  

(8.23) 
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where we make explicit use of the 
takes the form 

elements of the matrix Gs. Therefore, the projector fI 

Applying this projector to the general, non-initialized, vector wa as in (8.6), we have 

(8.25) 
kW*@ + f i w @ p  

&w*@ + w 4 P  
w =  - i - (  " )  & = kw, 1 + ~4 ( 0 

The  projector for which the diagonal elements of the matrix E are unity, that is, wd = 
wx = w4 = 1 is called slow orthogonal projector. A slow state generated by means of this 
projector is one corresponding t o  zero (divergence) velocity potential 2 = 0, and stream 
and geopotential functions given by: 

(8.26a) 

(8.26 b) 

respectively. 

Notice that this operation leaves the geostrophic modes unaltered. That is, for the case in 
which the general initial state is geostrophically balanced, we have that 6" = fi@, and 
from the expressions above it follows that the initialized state is given by, 

,,ji = &$a = ,$a 
- .  y = 4 a  

Therefore, the initialized state Gi = A$, is also geostrophically balanced. 

In fact, from (8.26) it follows that 

IC$ + &$ = ICda + &$a 

(8.27a) 
(8.27 b) 

(8.28) 

Thus, observing that 4 = IC4 + &$ is the  expression for the quasi-geostrophical potential 
vorticity (see Exercise 7.1), we see that $ = qa means that the slow orthogonal projector 
keeps this quantity conserved. 

The  slow orthogonal projector used above can be written as 

+l( IC 0 0 4  0 0 )  

I C + l  fi 0 1 
(8.29) 



Other possible choices for the weights w4 and tu4 produce the following projectors: 

(8.30) 

for 204 = 0 e tu4 = I ,  and 

(8.31) 

for tu+ = 1 and = 0. An initialized state generated by means of fig is referred to as a 
state with geopotential constmint, since this projector maintains the geopotential component 
@ of a general state w a  unaltered; analogously, a state generated by the projector f i r  is 
said t o  be a state of rotational wind constmint, since in this case, it is stream function 4a 
is unaltered. 

The projector fig is adequate when the geopotential component of the general state w a  is 
the one in which we have greater dependability (less error) than the other state components; 
the projector f i r ,  however, is convenient when we have great reliability in the component 
of the stream function. In the general case, in which the reliability of the components of an 
arbitrary state w a  is not well defined, the orthogonal projector fill is the most adequate. 
Obviously, when the component of divergent winds is of great reliability, we have to  choose 
one of the projectors above. In fact, if we do not know anything about the geopotential 
and stream function components, we can do nothing in terms of initialization for the case 
of the shallow water equations linearized about the state of rest. 

It is important to notice that ,  in the example we are considering in this section, the normal 
modes of the system are orthogonal. In the more general case in which these modes are not 
orthogonal, basically due to the fact that the matrix f, of Section 6.5 is not symmetric due 
to general basic flows, more general projectors can be obtained. In these cases we should 
make 11se of the a bi-orthonormal set of modes that can be obtained through the use of 
eigenvectors of the adjoint matrix o f f ,  (e.g., Ghil [61], for more details in the context of 
shallow water model in one dimension, linearized about a constant jet, see also Exercise 
7.2). 

8.3 Dynamic Relaxation 

Dynamic relaxation, also called nudging or Newtonian relaxation, is a data  assimilation 
procedure continuous in time. The observations are introduced in the governing equations 
by means of forcing terms added to  the equations, in order t o  “pull” (relax) the fields in  
the direction of the observations. Dynamic relaxation is employed during a period of time 
known as the pre-forecast, SO that  at the end of th i s  period the solution is as close as we 
want t o  the observations; from that time on, it is possible to  produce regular forecasts. 
One of the advantages of this procedure is that  the initial fields, from which the forecasts 
are issued, are automatically in dynamic balance a t  the end of the assimilation (relaxation) 
period. 
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More clearly, following the treatment of Haltiner & Williams [70], the data assimilation 
procedure by dynamic relaxation consists of the following steps: 

1. Specify the initial condition, at time to - T ,  when the evolution of the pre-forecast 
begins, where T represents the period of forecast time and t o  the instant of time when 
the forecasts are t o  be issued from. 

2. Solve the governing equations during the interval of time [to - T,to] ,  including the 
forcing terms to  relax the solution in the direction of the observations (or analysis). 

3. Arriving at  time t o ,  evolve the governing equations, without the forcing terms, up t o  
the time t of the desired forecast. 

In general, the evolution of any prognostic quantity, at a mesh point, where an observation 
supposedly exists, can be represented by the equation: 

(8.32) 

where 20 is the scalar quantity of interest, f is a function of the vector state w of the system, 
which includes the terms of the governing dynamics, the last term is a component of the 
forcing term, added to  the governing equations during the pre-forecast period, and includes 
the observation wo, with relaxation parameter y. Written in this form, t,he equation above 
presumes the availability of the observation at the mesh point of interest, and eventually at 
all grid points. Since observations are rarely available at grid points, it is best t o  replace 
the observation w" by the analyzed value wa. In this way the relaxation expression can be 
written as 

(8.33) 
d W  
at - = f(w) + y(wa - w) 

The intention of the method can be understood from a simple example, by considering 
f = 0 in the equation above. Assuming that the observation w0 is independent of time, and 
integrating (8.32) from t o  - T to t o  we have: 

(8.34) 

where wo is solution at time t o  - T .  Therefore, as the relaxation interval T increases, the 
solution approaches the value of the analysis wa (observation w"). In practice, the interval 
T is fixed and the relaxation parameter y is chosen in order to  relax the solution more 
rapidly, or more slowly, in the direction of the analyses (obser.vations). 

Another example can be presented by returning t o  the system of equations in Section 6.5. 
When we introduce the dynamic relaxation terms referring to  the analyzed fields ua,  wa and 
@, of winds and geopotential, respectively, we have: 

(8.35a) 
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dv  84 - + fo. + - - yv(Ua - v) 
d t  8Y 

= 0 

84 du av - + q- + -) - y+(P -* )  = 0 at ax dy 

(8.35b) 

(8 .35~)  

where, in  this case, the relaxation parameters yu, yu ,  and y+ are in principle distinct. The 
analytic study of t h i s  problem can be found in Hoke & Anthes [81], for the unidimensional 
case. 

To simplify the problem mathematically, let us  follow Daley [39] where only the geopotential 
variable is relaxed (and observed), that  is, yu = yv = 0. In this way, the equations for u 
and are identical to  those in Section 6.5, without the forcing term, thus we can use in 
their places the corresponding equations for vorticity and divergence. So, the system of 
equations to be solved becomes: 

dV2+ + fOV2X = 0 at 

!2 + @V2X + y@$ = Y+d" 
d t  

(8.36a) 

(8.36b) 

(8 .36~)  

Let u s  assume that the exact solution of the evolution of the fields T+!I = y!?, x = x' and 4 = 4' 
follows the system of original equations (7.29), without the forcing term, and that the state 
to  be analyzed evolves according to the forced system of equations so that 4 = +',x = x' 
and d = @, are now the quantities which satisfy (8.36). Notice that both systems of 
equations (7.29) and (8.36) are linear. Defining the initialization errors in  a n  usual way: 

(8.37a) 
(8.37 b) 
(8 .37~)  

we can identify the system of equations (8.36) as describing the evolution of errors. That 
is, the initialization errors evolve according to 

(8.38a) 

(8.38 b) 

(8.38~) 

where @ is the analysis error in the geopotential field.. 

The system above has constant coefficients, as the system in Section 6.5, and we can once 
again solve it by normal modes. We introduce a transformation equivalent t o  that in (7.34), 
but now for the error fields: 

(8.39) 
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where m,n and a have the same meaning as in previously, and where the constant k is 
defined as in (7.35). Notice that the amplitudes &(t),2(t)  and &t) in this  case are not 
necessarily the same as those in Section 6.5, although they are represented by the same 
symbols. Furthermore, we decompose the error in t,he analysis qP in a similar manner: 

(8.40) 

Therefore, the system of equations (8.38) is reduced to  an ordinary non-homogeneous dif- 
ferential equation: 

+ if,i'+(t) = y e a ,  (8.41) 
d+(t) 

dt 
where the vector + (4,  2, +)T, the matrix f,' is given by 

0 1  
i.=( 1 0 -; ) .  

0 -A -ir+/fo 
(8.42) 

and the non-homogeneous part of the system of equations is given by the the analysis error 
vector ea G (0 ,0,  The solution of (8.41) consists of the solution of the homogeneous 
part of the system of equations plus the particular solution, that is, 

* ( t o )  = e-"oi'T+(to - T )  + GP(tO) (8.43) 

where + ( t o  - T )  is the initial condition vector and Gp(to) represents a particular solution. 

The interest here is to  study of the behavior of the wave frequencies of th i s  modified system. 
These frequencies are given by the eigenvalues of the matrix e'. However, now this matrix 
is imaginary, so its eigenvalues are also imaginary. It is simple t o  verify that the secular 
equation is: 

ai + z2a2 - (1 + k)oe  - 2- . Yd = 0 (8.44) 
f o  f0 

whose solutions can be written as, 

u = Re(a) + iIrn(a) (8.45) 

where &(a) and Im(a) are the real and imaginary parts of the eigenvalues. The real part 
represents, as before, the frequencies of oscillation, while the imaginary part represents 
decaying, or growing, modes. 

For k = 0, the squares of (8.44) are 

(8.46a) 

0; = fl (8.46b) 

So that the errors in the rotational mode for k = 0 decrease with time, while the errors 
in the gravitational modes are oscillatory. For k > 0, it is possible t o  show that, when 
yd/fo > 0,  we have Im(a) < 0. This means that the procedure of dynamic relaxation 
introduces decaying modes, except in the case of the two inertial-gravity modes for k = 0. 
Also, Re(aR) = 0, for k 2 0, meaning that the frequencies of the rotational modes are 
not modified by relaxation procedure. (see Daley [39], pp. 359-360, for an approximate 
calculation of the frequencies for the case k > 0.) 
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8.4 0 pt imal Interpolation 

As discussed in the introduction of this lecture, data assimilation by the method of optimal 
interpolation (01) uses an expression as in (8.1) to update instantaneously the values of the 
variables of the system at a mesh point (analysis point). Contrary to  the relaxation method 
seen in the previous section, 01 is an intermittent assimilation method, since it is used 
only at synoptic times, that  is, instants of time considered standard in meteorology, such 
as 00. 06. 12, and 18 GMT (Greenwich Mean Time). During the 6 hours period, between 
the synoptic times, the state of the atmosphere evolves by means of a system of equations 
discretized in space and time, representing a model of general circulation of the atmosphere. 
These general circulation models produce a base state (do not confuse it with basic state), 
or forecast state w,, a t  time t k .  The correction due to  the availability of observations can 
be obtained on the basis of the methods discussed in Lecture 4, through the formula 

J 

(8.47) 

where the notation used here is the same as in previous lectures. As seen in the introduction 
of this lecture, the weights I?, in the 01 method are obtained by means of the expression 

ck = S$z(HkSLHz + R,)-’ (8.48) 

where we use a “tilde” over the weighting matrix to  highlight the fact that these is not the 
f Kalman gains. The reason for th i s  being that the forecast error covariance matrix S, is 

specified. rather than predicted according to  the Kalman filer equations. As we have seen 
in Lecture 5 ,  for the case of linear systems, the calculation of the forecast error covariance 
matrix involves an enormous Computational cost. As a matter of fact. the reasons to avoid 
explicit calculation of Sd go beyond the computational issue. They are also attributed to  
the nonlinearity of governing equations, as well as to lack of knowledge of quantities such as 
the modeling and observation error covariance matrices. In 01 the elements of the matrix Sf 
are specified based on statistical evaluations and dynamic constraints, as described below. 

In a relatively general way. the state vector at a point r = ( A ,  q , p ) ,  at  a certain instant 
of time, encompasses the wind vector and the geopotential function w(r) = (u, w, 4)T(r), 
where for the moment we omit the time index. Thus, the error covariance matrix Sf between 
two points rl e r, is given by 

S f ( %  r3) = f{W%)q. , )> (8.49) 

where G(r) = wf(r) - wt(r) is the forecast error. for wt(r) representing the real value of 
the state of the atmosphere. Therefore, we can decompose Sf as 

(8.50) 1 SfIuU( rz ,  r3) Sfluv(r2, r,) SfIud(rz, r,) 
Sf(r2,  r,) SfIVu(rt, r3) Sflvv(rz, r3) SfIVd(r l ,  r3) i S f l d u ( r l ,  r,) SfIdV(rz,  r,) Sfl+6(rl, r,) 

where Sfl-(rz, r3) are the cross-covariance functions defined in analogy to  (8.49), that  is, 

SfIuu(rl .  r3) = L{c(r,)ii(r,)) (8.51) 

where 6(r) = u f ( r )  - ut (r )  represents the forecast error in the variable u, at point r,  and 
similarly for the rest of the error cross-covariances in (8.50). 
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The geopotential-geopotential forecast error covariance function S~I~'#', can be written in 
terms of the correlation and variance fields as 

sf.1" $3 sjI+d(r;,rj) = 0.0. a d 3 d c.. $ 3 ,  dd (8.52) 

using a compact notation for the error standard deviation o! = ad(,;) and the correlation, 
C@ = Cdd(r;, rj). In conventional 01, the variance and correlation fields for the geopoten- 
tial error are specified empirically as seen below, and the remainder of the cross correlations 
is specified by imposing the geostrophic constraint; that is, by assuming that the prediction 
error fields are geostrophically balanced. 

13 

In conventional applications of 01, we assume the field of standard deviation of geopotential 
errors to  be independent of the coordinates in the horizontal s (A, 9). Hence, the standard 
deviations of geopotential errors 

c! = d(r;)  = &(pa) (8.53) 

are taken as a function of the pressure (height) levels alone. Moreover, the geopotential- 
geopotential correlation field is considered t o  be horizontally homogeneous, and separable 
from the vertical components, that is, 

c y  = Cdd(s; - s j ) v @ ( p ; , p j )  (8.54) 

Here we recall the notion of homogeneous random fields introduced in Lecture 2. Finally, 
we impose the hypothesis of horizontal isotropy, so that we can write 

c!w = cys.. $ 3 -  - 1s. z - s.1).  3 (8.55) 
13 

The effects of the homogeneity hypothesis were carefully studied in Cohn & Morone [32], 
for the case of spherical geometry. In particular, these authors observed that,  in certain 
cases, the hypothesis that the standard deviations are independent of the horizontal co- 
ordinate is responsible for up to  30% errors in the real value of the standard deviations. 
The separability hypothesis of the correlations field in the vertical is currently seen as one 
of the main barriers t o  accurately forecast dramatic atmospheric events such as strongly 
baroclinic systems. Recent research has concentrated in eliminating, or at least, relaxing 
some of these hypothesis. Examples of these efforts are the work of Bartello & Mitchell 
[7] in non-separable covariance fields, and those of Gaspari & Cohn [59] in specification of 
non-homogeneous correlation fields. 

Focusing our attention on the conventional procedure of 01, consider the geostrophic balance 
relations among the variables u;, w; and 4;: 

(8.56a) 

(8.56b) 

for, 
1 -- a; = 

f i a  
1 

f; a cos cp; ' Pi = 

(8.57a) 

(8.57b) 
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where a is the earth radius and f; = 2R sin vi is the Coriolis parameter. Notice that the 
expressions above apply only to  mid-latitudes. 

Assuming that the ensemble mean represents an approximation of the real variables wt1 
after applying the ensemble mean operator t,o (8.56), we can write 

(8.58 a) 

and subtracting (8.58) from (8.56) we obtain the geostrophic relation among the errors in  
the variables u,  v and 4: 

From these relations it follows that 

(8 .5%)  

(8.59 b) 

(8.60a) 

(8.60e) 

(8.60f) 

(8.60g) 

(8.60 h) 

where all the covariances are written as a function of the error covariance function +$ 
given in  (8.52). The complete forecast error covariance matrix can be written symbolically 
as 

(8.61) 

where G; and  Gk are differential operators defined as 

(8.62 a) 

(8.62b) 
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for m = i, j .  

By means of a limiting procedure, it is possible t o  show (see Cohn & Morone [32]) that  the 
forecast error standard deviations for the winds are given by 

(8.63a) 

(8.63 b) 

as a function of the geopotential height (co)variance at a point. 

Consider a simple example the case of specifying the matrix S ,  J for on a plane atmosphere. 

This eliminates the need to  specify the vertical correlations Vb“ in (8.54). Therefore, the 
state vector wfia in consideration is similar t o  that considered in the previous section, and 
in the end of the previous lecture, for the shallow water system of equations. To simplify the 
problem further, we treat here the case of a ,&plane, with latitude and longitude represented 
by the dependent variables x and y, respectively. In this case, we notice that the constants 
a; and pi defined above are substituted by 

(8.64a) 

(8.64b) 

where now fi = fo + /3y; is the Coriolis parameter. In practice, the state vector is treated on 
a grid, and therefore the derivatives seen above should be interpreted as finite differences. 

A common model for the geopotential-geopotential correlation function is the Gaussian 
model, that is, 

(8.65) c?? = exp ( -2s:j)  b , t3 

where, s;j now is the distance between two points, (xi, y;) and ( z j ,  yj) on the plane, 

s;2j = (xi - xj) 2 + (yi - yj) 2 1 (8.66) 

and b is a n  empirical constant proportional to  the inverse of the decorrelation distance. 
Therefore, the derivative of Cbb with respect to  the variable [k can be written as: 

(8.67) 

where 6 represents either x or y,  and IC represents either i or j. It  is clear that, according 
t o  the definition (2.52), the covariance Sfl4d represents a n  isotropic field (consequently, 
homogeneous). 

Substituting the expression for the distance s$ in (8.67), and expressions (8.60) we have 

(8.68a) 
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i 

Figure 8.1: Point-correlations at the center of a square domain using the geostrophic balance 
relation: the equations obtained in this section: (a) +4; (b) @v; ( c )  +u; (d) V-6; (e) V-V; 

(f) V-u: (g) u-4; (h) u-w; and (i) u-u. 
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(8.69a) 

(8.69b) 

All the quantities are now written as functions of the standard deviation of the forecast 
errors in geopotential heights. The correlation formulas obtained above are shown on Fig. 
8.1 for a square Cartesian plane, at its mid-point. 

EXERCISES 

1. Based on the shallow-water system considered in this chapter, while we studied the 
initialization problem, show that the  quantity corresponding to  the quasi-geostrophic 
potential vorticity: 

is conserved. Furthermore, using the Fourier transform introduced in (7.34), show 
that we can write 

q = l C ? J + & j  

(Note: The quantity q above refers t o  the complete field, that is, basic state plus 
perturbations.) 

2. Consider the shallow-water equations in Exercise 7.2. Assume these equations are 
applied t o  a doubling periodic channel; using Fourier transform for u’, v’ e @, obtain 
the matrix for the corresponding system. 

3. Balgovind et al. [6] proposed a simple model to  describe the spatial structure of 
forecast geopotential error fields for time scales of one t o  two days. Based on barotropic 
potential vorticity conservation equation, these researchers arrived to  the following 
stochastic equation for the errors 4 = $(x, y) in the geopotential field, in a tangent 
plane: 

L 4  = F(X7 Y) 

where the operator L is defined as 

L(z ,y)  = (V’ - a’) 
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and V is the Laplacian in two Cartesian dimensions x-y, x and y representing lon- 
gitude and latitude, respectively, and a > 0 being a constant related with the atmo- 
sphere depth. The term F is the stochastic forcing, with known statistics: 

and represents the uncertainties in the model. Here, s = (x, y), SI, s2 are two points 
in  the x-y plane, and o is the noise F variance, assumed known. Moreover, define the 
error covariance function P ( S I  , s2) as 

Hence, show that: 

(a) The equation for the spatial correlation striicture p is 

h k?P(Sl! s2) = O@l - s 2 )  

For that,  assume that the geopotential error variance field is identical to the 
forcing variance field F .  

(b) Considering the unidimensional case, that  is, when s + 2, and assliming the 
correlation field is homogeneous, the correlation function p satisfies the following 
eauation: 

(d' - a 2 ) 2 p ( s )  = 6(s) 
ds2 

where s E 1x1 - 221. 

(c) The solution to the equation in the previous item can be written as: 

1 , - ~ I ~ 1 - ~ 2 1  P ( " 1 : " 2 )  = P ( Z 1  - .2) = - (1 + aIx1 - .21) 403 

(Hint: Use symmetric Fourier transform.) This model for error correlations 
is sometimes called second order autoregressive, a more complicated version of 
which is utilized in some operational 0 1  systems. 
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Chapter 9 

Atmospheric Data Assimilation: 
Advanced Methods 

9.1 Developments toward Advanced Methods 

The tendency in operational data assimilation centers these days such as NCEP and 
ECMWF, is to evolve in the direction of eliminating certain hypothesis about approxi- 
mating the evolution of forecast error covariances. As discussed previously, one of the most 
fundamental ingredients of the methods based on estimation theory is the propagation of 
error covariances by means of the dynamics of the system. If it were possible t o  calculate 
this  evolution completely, the separability hypothesis between the vertical and horizontal 
correlations, geostrophic assumption, homogeneity, and isotropy hypothesis would not be 
necessary, because the dynamical properties would be present in the corresponding error 
covariance matrix: no artificial properties would have to  be imposed by ad hoc constraints. 
Moreover, the error covariances would evolve instead of being stationary. However, we know 
that the calculation of the forecast error covariance is impractical due to  the large computa- 
tional burden. The computing progress of the past few years has been very promising. As a 
consequence. it is becoming possible to  develop methods that allow for a slow relaxation of 
many of these conventional hypothesis. Some data assimilation systems today are designed 
with the goal of allowing easy progress and implementation of improvements on the error 
covariance structure. An example of such a versatile system is the Physical-Space Statis- 
tical Analysis System (PSAS; da Silva et al. [37] e Guo & d a  Silva [68], of the Goddard 
Space Flight Center. The procedure to  relax the hypothesis in the construction of error 
covariances is referred to as construction of error covariance models, as each premise that 
gets eliminated, or substituted by less restrictive premises, generates a new error covariance 
model. 

In this section we describe two ideas for relaxing some of the conventional constraints 
imposed on modeling error covariances. Initially, we consider a way of eliminating the 
geostrophic dynamical constraint, by presenting a way of building error covariance with 
coherent balances from the governing dynamics, for simple dynamics. Later, we consider 
a model that eliminates the separability hypothesis between vertical and horizontal corre- 
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lations. Also in this Lecture, we present the basic ideas of what is called parameterization 
of error covariance and how to calibrate the quantities involved in these parameterizations. 
Finally, we discuss an application of the Kalnian filter for a simple dynamical system, and 
some approximations to  the Kalman filter with possible practical potential. 

9.1.1 Generation of Balanced Cross-Covariances 

The imposition of the geostrophic balance dynamic constraint used in 01 is certainly 
problematic since the equations of motion described in Lecture 7 do not satisfy this  con- 
straint exactly, but only approximately. Consequently, the forecast error covariance matrix 
which corresponds to  the complete system of governing equations is only approximately 
geostrophic. When the geostrophic approximation is used to  construct a forecast error co- 
variance S i ,  the corresponding gains obtained through (8.48) have components in the rapid 
modes of the system, consequently generating a analyses wi initialized incorrectly, that is, 
containing rapid waves, that degrade the quality of the forecasts. One of the ways t o  avoid 
this  type of inconsistency is t o  develop a procedure that combines the real intrinsic balances 
of the governing dynamics with balances imposed in the forecast error covariance matrix by 
means of the slow modes of the system, without them necessarily being geostrophic modes. 
The  generation of balanced covariances in this form suggests the possibility of eliminat- 
ing the initialization stage of the analysis produced at a given instant of time. This fact 
was initially observed in the implementation of the analysis system of NCEP, the so called 
“Spectral Statistical-Interpolation” (SSI) developed by Parrish & Derber [112], using the 
linear balance relation, instead of the geostrophic relation. Similarly, the European sys- 
tem at ECMWF substitutes the geostrophic relation by a more general balance obtained 
through the Hough modes (see Heckley et al. [74]). What we describe below is a simplified 
procedure, analogous to  this latter one. 

To describe this type of procedure we will follow the treatment of Todling & Cohn [129], 
remembering that this procedure can be extended to the nonlinear case in which the dy- 
namics is that of a general circulation model. In the simple cases t o  be considered here, the 
governing dynamics that we have in mind is linear with n degrees of freedom and conse- 
quently n normal modes; ns modes classified as slow. Moreover, we take a simple system, 
such as that from the discretized shallow water equations on the plane. Therefore, the 
system variables are the zonal and meridional winds u and Y, respectively, and the heights 
h, at each grid point. 

In this case, as in 01, the idea is t o  base the construction the error covariance matrix Sf,  
omitting the index k referring to  the time tk,  by specifying only the error forecast error 
covariance matrix for the height fields, designated by Sf lhh .  Here we use the same notation 
as in the previous lecture, with the following difference: now the height-height forecast error 
covariance is a matrix of dimension n / 3  x n / 3 ,  instead of a function. This is simply due 
t o  the fact that we are now assuming that the governing equations have been discretized 
in some way. Therefore, not only the height-height forecast error covariance is a matrix, 
but also all the other covariances and cross-covariances in Sf are matrices. That  is, the 
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decomposition (8.50) is redefined as 

where now all the elements of Sf are written in  bold face because they are matrices of 
dimension n/3  x n / 3 .  Notice here we use height instead of the geopotential function, 
without loss of generality. 

We should recognize the fact that not every error covariance matrix hh (referring to  height- 
height), Sf lhh ,  can be a block corresponding to a “slow” multivariate error covariance matrix 
Sf. This is easily understood if we notice that in general Sflhh has dimension n / 3  x n / 3 ,  
but n s  can be less t h a n  n,/3. If Sflhh should be part of a slow matrix Sf, then, it can be 
a t  most rank n.9. Thus, wc have to  establish from the start the “slowness” of Sf lhh ,  and 
later build the rest of the error covariance matrix, that is ,  the cross covariance matrices so 
that the resulting Sf is slow. This leads to  a n  expression similar to  the one introduced in 
(8.61), but in which the operators that act on Sf lhh  carry the fact that  Sf is “slow” instead 
of geostrophic. 

As in the shallow water problem considered in Lectures 6 and 7, we assume that the normal 
modes of the system in question can be collected as the columns of a matrix V, of dimension 
n x n.  The matrix formed by n s  slow vectors is represented by Vs and has dimension x n s .  
It is necessary to  partition th is  last matrix as 

vs=  (;;) 
where each block has dimension n / 3  x n s ,  and where for example, V h  represents the matrix 
of the height components of slow normal modes. Furthermore, we designate by sh the 
subspace that spanned by the n s  columns of the matrix v h .  

First, we want t o  modify any covariance matrix Sf lhh  t o  make it ”slow”. This problem can 
be arranged as follows. Find a matrix X that satisfies the following conditions: 

Range X E Sh , (9.3) 

and 
X T = X ,  (9.4) 

minimizing at the same time the scalar functional 

The condition (9.3) imposes that the columns of X belong to  the subspace Sh, i.e., that  the 
height components are a linear combination of slow modes. The second condition imposes 
that X be symmetric, since it has to  represent a covariance matrix. We do not demand 
above that this matrix be positive semi-definite, but we will see that  the solution to  the 
problem (9.3)-(9.5) is positive semi-definite, and therefore it can represent a covariance 
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matrix. The last condition above demands that  X be as close as possible to  Sf lhh  in the 
Frobenius norm 11. l l~ ,  which is defined as the sum of the squares of the elements of a matrix 
(See Golub & \'an Loan [67]). This is a norm that  penalizes equally each element of the 
difference between Sflhh and X. Another norm could have been chosen, as for example a 
norm with weights, but the Frobenius norm leads to a very simple solution. 

As we seen below, the solution of the problem (9.3)-(9.5) is unique and given by 

x = n,sfl""n;, (9.6) 

where llh is the orthogonal projector for the subspace Sh, that  is, 

The  solution, X in (9.6) is positive semi-definite, since i t  corresponds to a congruence 
transformation of a positive semi-definite matrix S;lhh. Also, notice that  it is not possible 
for the solution to  be positive definite, because llh has rank nS, since the matrix is invertible 
VrVh in (9.7) has dimension ns  x n s ;  consequently X is at most rank ns .  

We want t o  show that X given in (9.6) is the unique solution of (9.5). For this,  notice that 
as n h  is the orthogonal projector on Sh, it satisfies the following condition: 

(9.8a) 
(9.8b) 
( 9 . 8 ~ )  

Equation (9.3) is satisfied by X, given the condition (9.8a); moreover (9.4) it is obviously 
satisfied. Now we show that X given in (9.6) minimizes (9.5), in a unique way. 

For the moment, let us denote by X, the solution given in (9.6), Le., 

x* I I h S f l h h n ; .  (9.9) 

Then, any X which satisfies (9.3) and (9.4) should be of form 

x=x*+i;r,  (9.10) 

where 
Range 3 E sh , 

2Li;r. 
and 

(9.11) 

(9.12) 

To show that X, is the only minimizer, we need to  show that  = 0 at the minimum. 

Substituting (9.10) in  (9.5) we have 

(9.13) 
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where we use the definition of the Frobenius norm, as well as the definition of the trace 
operator (see Goliib & Van Loan [67], pp. 56 and 332), and where we write 

S = TrgT(X, - S f l h h ) .  (9.14) 

From expressions (9.11) and (9.12) it follows that 2 should be of form 

j i ;  = IIhYII;, (9.15) 

for any symmetric matrix Y .  Substituting the expression above and (9.9) in  (9.14) we 
obtain 

6 = Tr I I ; Y I I h ( I I h S f l h h I I r  - SfIhh)  
= TrYIIh(IIhSflhhIIr  - S f l h h ) I l l ,  (9.16) 

where we use ( 9 . 8 ~ )  and the fact that 

Tr AT B = TrB A T ,  (9.17) 

for any two matrices A and B with same dimensions. Using (9.8b) in (9.16) we have 

and therefore (9.13) can be written as: 

(9.18) 

(9.19) 

where the sign of equality prevails if, and only if, k = 0 ,  since ~~~~~~ is canceled, and if 
and only if, 2 = 0 .  Then, X, minimizes q, in a unique way, completing the demonstration. 

Combining the expressions (9.6) and (9.7) we have that 

x = v,xv;, (9.20) 

k E (V;Vh)-'VhTSf'hhVh(VhTVh)-l (9.21) 

is a symmetric matrix of dimension ns x ns. It is not difficult to observe that  any slow 
covariance matrix S should be of form 

where 

s = vssv;, (9.22) 

for any symmetric matrix S, of dimension ns x ns. In th i s  case, S is the representation of 
S in  the space of normal modes. Comparing (9.2). (9.20) and (9.22), it follows that 

Sf s vsxv; (9.23) 

is a unique slow covariance matrix for which the covariance block hh coincides with the 
matrix of slow hh covariance X. In this way, the formulas (9.21) and (9.23) provide a way of 
building a dynamically balanced slow error covariance matrix Sf, given general height error 
covariance matrix S f l h h .  The matrix X is a representation in the space of normal modes 
of Sf. Equations (9.21) and (9.23) replace the construction of geostrophically balanced 
covariances through (8.61). 
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9.1.2 A Non-Separable Covariance Model 

Let us consider now the case of abandoning the vertical separability hypothesis that has 
been ment,ioned in the previous lecture. This hypothesis is known to be responsible for 
the failure of data assimilation system in producing analysis capable of forecast regions of 
rapid vertical atmospheric motion. The baroclinic instability involves such motions and it is 
one of the main atmospheric instabilities. Assimilation systems currently in operations still 
largely underestimate these atmospheric instabilities due to their poorly prescribed forecast 
error covariance models. Since these models account for no correlation among fields at 
different vertical levels, what happens in those cases is that the information provided by 
observations at a certain levels of the atmosphere is not correctly transferred t o  other levels 
because of the vertical separability assumptions. The treatment of this section is due to  
Bartello & Mitchell [?I, and it has the goal of building error covariance functions for which 
the vertical and horizontal relations are entirely determined by the dynamics, and therefore 
being non-separable. What these authors proposed is based on a system of simplified 
equations, analogously to  what its done in 01, where the covariance structure is build on 
the basis of the geostrophic balance relation. As simple as it might be, Bartello & Mitchell’s 
model is an extremely promising one. 

Following Bartello & Mitchell’s description, we consider the system of primitive equations 
linearized about a basic state with buoyancy fluctuation u = ,/m, independent of 
height, where cp is the the constant of specific heat t o  constant pressure for the dry air. 
Moreover, the vertical coordinate is taken as the pressure, so that 2 = -H ln(p/p,), where 
H = RT/g is the height scale, p, = 1000 mb is the pressure at  the surface, and R, T ,  and 
g h a s  the same meanings as in Lecture 7. The basic state is that of rest, and the Coriolis 
parameter f = fo is taken t o  be constant. 

The equations of motion in this case (see Holton [sa], Section 11.3) are given by 

fov + - 84 = 0 (9.24a) 

ad) (9.2413) 

(9.24~) 

(9.24d) 

dU 

dt  d X  
dV 
- - t $ o u + -  = 0 
at dY 

du dv aw w - + - + - - -  = 0 
dx dy dZ H 

- -  

The boundary conditions on top and at the surface of the atmosphere can be written as: 

6 84 (9.25) 

for 2 = 0 e Z = 2, where 2 represents the top of the atmosphere. Here, 6 = 0 corresponds 
t o  a zero vertical speed. 

dZ w = - = 
dt 9 at 

We can eliminate W ,  partially, from the equations above by substituting (9.24d) in ( 9 . 2 4 ~ ) ~  
that is, 

du dv - + - =  ax ay 
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(9.26) 

where we say partially since the boundary conditions are still given as a function of W .  

Let us look for solutions of the  form 

(9 .27~~)  
(9.27 b) 
(9 .27~)  
(9.27d) 

Substituting these functions in the equations for u and w (9.24a) and (9.24b), respectively, 
it is simple to see that due to  the fact that these equations do not involve the coordinate 
Z ,  they involve U ,  V and @ only, that is, 

Now substituting 

or yet, 

dU a@ 

dV a@ 
- + f o U + -  = 0 
at dY 

- _  d t  fOV+-& = 0 

(9.27) in (9.26) we have that 

( 9 . 2 8 ~ ~ )  

(9.28 b) 

(9.29) 

(9.30) 

Noticing that the left hand side of this equality is independent of 2, while the right hand 
side is independent of (2, y, t ) !  we can separate th i s  equation in two: 

(9.31) 

(9.32) 

where c2 is the separability constant. The expression (9.32) is the vertical structure equa- 
tion. 

To rewr i te  the boundary conditions (9.25) with solutions given by (9.27) we substitute 
(9.25) in  (9.24d) 

(9.33) 

for 2 = 0 e Z = 2. And therefore, using (9.27) we have that 

(9.34) 

for Z = O e Z = 2. 
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The vertical structure equation (9.32), with boundary conditions (9.34), is a Sturm-Liouville 
problem (e.g., Arfken [5] )  which can be solved without difficulty. Due t o  the boundary 
conditions, the constant c2 can assume only certain discrete values c;, with corresponding 
solutions A ( Z )  = A n ( Z ) .  Through the orthogonality properties of the solutions of the 
Sturm-Liouville problem we can write 

z S, A , ( z ) A , ( z ) ~ - z I H ~ z  = s,,, (9.35) 

where Snm is a Kronecker delta. 

Furthermore, the equations (9.28a), (9.28b), (9.31) for U, V ,  and @, respectively, represent- 
ing the horizontal structure can be solved by the applying Fourier transform, in analogy t o  
what we did in Lecture 7. Assuming that we are treating the case for the infinite plane, U ,  
V and iD can be written as 

(9.36) 

where r = (x,y) and s = ( k , C ) ,  and the Fourier transform is given as in (2.54). The 
coefficients U ,  V ,  4 can be determined by substituting the expression above in equations 
(9.28a), (9.28b), (9.31). So that the solution for u, v and can be put in form 

(9.37) 

where w E (u, v, $)T and & E ( i i ,6 ,  &)* 

To build a covariance model we can follow a similar path to  that in Section 8.4. Assume that 
the real state wt(r, 2, t ) ,  as well as the forecast state wf(r,  2, t ) ,  obey the same equations 
of motion (9.24a)-(9.24d). Therefore, due to the linearity we have that  

00 

ef(r,Z,t)  = A n ( Z ) /  i ' ( ~ , t ) e - ~ ~ ~ ' . d s  
R2 n=O 

(9.38) 

where ef = wf - wt is the forecast error. The vertical structure functions are the same, for 
the errors as well as for the fields, since the errors follow the same separation of variables 
(9.27). 

The error covariance matrix between two spatial points (ri, Zi) and (rj, Zj)  can be found 
by calculating the outer product between error vectors ef at two spatial points i and j ,  and 
by using the ensemble mean operator. That is, 

n,m=O 
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where * represents the transpose conjugated. This expression can still be written as 

00 

sf(ri,z;,rj,zj,t) = A ~ ( z ; )  ~ , (z j )  Sf(r iTr j , t )  (9.40) 
n,,=O 

where Sf(,;, rj, t )  is a horizontal covariance 

depending on  time t .  
separability for the horizontal and vertical components. 

From the expression (9.40) we see that the covariance is non- 

At this point Bartello & Mitchell [7] comment that this covariance model can be used to  
determine the complete covariance matrix, that is, the covariance functions SfIuu, Sfluv,  
etc., where homogeneity and isotropy hypothesis can be employed. Another possibility is t o  
use only the block of the covariance matrix Sf corresponding to  the height-height covariance 
function Sflhh. The remainder of the covariances and cross-covariances can be determined 
by means of the geostrophic balance relation. This, in fact, simplifies calibration procedures 
that have to  be used so that we obtain error covariances with relevant (physical) meaning 
for assimilation systems. 

Imposition of the homogeneity and isotropy assumptions for Sflhh lead to  

S f l h h ( r , t )  = 2w S f lhh (w)  .Jo(wr) wdw (9.42) 

where JO is the order-zero Bessel function, and r = Ir, - r,l. This is identical to  the result 
that we obtained in (2.66) when we discussed isotropic covariances in R2.  

Finally we can write 

00 

SfIhh(r,  Z;, Zj,  t )  = 27r A,(&) A,(Zj) S f I h h ( w )  Jo(wr)  wdw (9.43) 
0 n,m=O 

is the complete height-height error covariance function. In practice, this  function needs to  
be transformed into the matrix S f l h h ) ,  and adjusted to  real data; for example, by means of 
fitting techniques, such as least squares. Details on practical implementations are discussed 
in the original work of Bartello & Mitchell [7]. 

9.1.3 Covariance Tuning 

At  this  point it should be clear that modeling error covariances is fundamental in atmo- 
spheric data assimilation. Once a covariance model is constructed, for example for the 
forecast error covariance Sf, we need to  make the analytical model correspond t o  reality in  
some way. This is done in general by comparison with the data provided by the observational 
network and the model forecasts provided by the general circulation models. As mentioned 
in the previous section, one of the consistent ways of making the adjustment is by means 
of least squares methods. For schemes such as conventional 01, or models described in the 
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previous section, the height-height error covariance matrix Sf lhh  is modeled in some way 
and the remainder of the multivariate error covariance is obtained by some type of balance 
constraint. In the example of 01 given i n  Section 8.4 the correlation distance is i n  general 
the parameter t o  be calibrated, or determined, by means of the comparison against data. 
For the model of the previous section, the basic state variables, such as the temperature 
T ,  and also the order of truncation of the sum and integral in (9.43), are parameters to be 
estimated in order t o  calibrate the error covariance statistics. 

In this section we describe a way of estimating parameters in an error covariance model 
based on the ideas of maximum likelihood seen in Lecture 4. This procedure was suggested 
by Dee [41, 421 with the main intention of calibrating parameters in models for the model 
error covariance Q k  and of observation R k ,  in the context of advanced assimilation schemes 
like the Kalman filter, since the statistics of these errors is in general not well known. A 
particular application of this method is when we need to estimate parameters in the forecast 
error covariance Sf (see Dee [41, 421). 

Consider the case in which a error field is represented by the mk-vector V k ,  in  time t k .  We 
want t o  approximate the covariance matrix of these errors by a matrix s k ( e ) ,  where B is an 
r-vector of parameters to be determined. We can write 

In what follows we refer t o  the error vectors v k  as pseudo-innovations. 

To calibrate s k ( 8 )  based on samples (or realizations) of the pseudo-innovations vector V k ,  we 
assume that the errors represented by the error covariance matrix are normally distributed, 
with mean zero and covariance s k ( 8 ) ,  

vk N ( o i s k ( 8 , ) )  , (9.45) 

at least for some choice of the parameters in (9.44) so that B = 8, 

As we have seen in previous lectures, the assumption made above, together with the assump 
tion that the pseudo-innovations { V k } ,  for k = 1 , 2 , .  , K ,  is an independent sequence, says 
tha t  the conditional probability density p ( , , ) l 6 ( { V k } l 8 )  = p ( { V k } l @ )  is given by the product 
of Gaussian densities 

h’ 

p ( { v k } l e )  = n d V k l e )  
k= l  
K 

where = & { v k } .  

Following the methodology of maximum likelihood estimation we can obtain an estimate 
BML for 8, as being the value that maximizes the conditional probability above, that  is, 

eML = argmax p ( { v k } l B )  = argmin f(8) (9.47) 
e 6 
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where 
K 

f ( e )  = [in isk(e)l + (vk - P ~ ) ~  sil(e) (vk - 4 (9.48) 
k=l 

which is obtained by taking the natural logarithm of (9.46) and ignoring the constant term. 

Assuming that the covariance model is stationary, that  is, 

the likelihood funct ion takes the form 

(9.49) 

where we introduce the trace operator in  the last equality, for convenience, after observing 
that the function f is scalar. Now, notice that 

k=l  k=l 

(9.51) 

where we use the property of the trace that Tr (AB)  = Tr(BA) ,  and the last equality is 
obtained by exchanging the order between the sum under IC with the trace operat,or, since 
this last one is also a summation operation. 

By defining f = f / I <  we have that 

f(8) G In IS(8)l + T r ( S ' ( 8 )  5) 

where 5 is the sampling covariance matrix, or sample covariance: 

(9.52) 

(9.53) 

The function, defined in (9.52) is the one to  be minimized so that  we can determine the 
parameters 8. This can be done in practice by means of function minimization methods. 
Many of these methods need the gradient function (9.52), as discussed in Dee [41]. For 
a relatively small number of parameters 8, that  is, when r N o(l) ,  and with a reasonable 
quantity of data m - o(102), it is possible to  obtain a good estimate of parameters, as 
indicated recently by recent work (Dee 1996. pers. communic.). 
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9.2 The Kalman Filter for a Simple Model 

The Kalman filter was implemented by Cohn & Parrish [33] for a simple model of the 
atmosphere and we consider this case as an example for a da ta  assimilation system in 
what follows. We consider the shallow-water equations linearized about a basic state with 
constant zonal velocity U and zero meridional velocity, and apply it to a p-plane. These 
equations are discretized with the finite difference scheme discussed in Lecture 7. The 
distinction from what we saw in Lecture 7, and the application now, is that  the boundary 
conditions here, and in Cohn & Parrish [33], are only periodic in the East-West direction, 
with “solid walls” in the North-South direction, that  is, the perturbations in meridional 
velocity are zero for all time along the North-South boundaries. This makes the morphology 
of the finite difference scheme somewhat different from that shown in Fig. 7.1. The extent 
of the domain of interest in this case is shown here in Fig. 9.1, and encompasses a region 
with a size equivalent to that  of the contiguous United States. The necessary parameters 
t o  fully define the system and finite-difference are listed in Table 9.2. 

Table 9.1: Shallow-water model parameters as in Cohn & Parrish [33]. 
Parameters Values 
I grid points in the zonal directions 
J grid points in the meridional direction 
East-West extent of channel, L,  
North-South extent of channel, L ,  
Grid size, Ax = Ay 
Time step, At 400 s 

,&plane parameter, /3 
Basic state geopotential height 
Basic state zonal speed U 

25 
16 
5000 km 
3000 km 
200 km 

Coriolis parameter, fo 6.15 x 10-5 s-l 

1.82 x IO-’’ m-ls-’ 
3 x io4 m2s-* 
25 ms-’ 

Figure 9.1: Domain of the model of Cohn & Parrish [33] encompassing the contiguous 
United State. The tick-marks indicate grid points; the “plus” signs indicate radiosonde 
observations; and the “squares” indicate the wind profilers. 

To mimic a real data assimilation system, Cohn & Parrish [33] considered two observational 
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networks existing in the region of study, just as indicated in Fig. 9.1. The observational 
network referred as the A-network is composed of 77 radiosondes that observe the winds 
and the mass field (heights) every 12 hours; and the observational system referred to  a the 
B-network is composed of the radiosondes of the A-network plus 31 wind profilers, which 
observe the only winds every hour. The error standard deviation for each of these observing 
systems are shown in Table 9.2. 

The equations corresponding to  the Kalman filter are implemented for this system with the 
intention of studying the error evolution in an assimilation period of 2.5 days. Since, in this 
case, the system of governing equations is linear, the error covariance evolution is decoupled 
from the state estimate evolution. Therefore, as in Cohn & Parrish [33], we focus discussion 
only in the behavior of the error evolution, and ignore what happens with the states. 

Table 9.2: Observational error standard deviations. 
Observations ou (ms-l) uv (ms-l) oh (m) No. Obs. 
Radiosondes 2.8 2.8 11 77 
Wind Profilers 1.5 1.5 31 __ 

Fig. 9.2 shows the result of assimilation experiments using the observational networks A and 
B introduced above. The figure shows the time evolution of the error standard deviation, 
averaged over the domain, for all three variables of the system u. Y and h. The plotted 
quantities correspond t o  the square root of the sum of the elements of the main diagonal 
of the forecast and/or analysis error covariance matrices PJ@, divided by the total number 
of grid points, for each one of the variables. The curves indicated by A refer t o  the results 
obtained when only the radiosonde da ta  is assimilated. In this case, we see that  at every 12 
hours the curves display a jump, resulting in an instantaneous reduction of errors. These 
jumps correspond to  the analysis times, when the radiosonde observations are processed by 
the filter. Between two consecutive observation intervals, the errors grow due t o  the presence 
of the model error, represented by the matrix Q k  of Lecture 5 (see Cohn & Parrish [33] for 
more details on this quantity). Notice further in Fig. 9.2 that  the errors in the meridional 
velocity and heights are below the radiosonde observational error levels (indicated by the 
curves marked OLV; numbers listed in Table 9.2). The errors in the zonal winds do  not 
fall below the observational error level, which is a particular property of the solution of the 
shallow-water equations. 

When the wind profilers are present (curves indicated as B), we see that  during two con- 
secutive A-network observation periods, errors decrease every hour due to  the assimilation 
of these wind profilers. The presence of these extra wind observations produce an overall 
reduction in the errors in all variables, including heights which are not directly observed 
by the B-network. The contribution of the wind profilers t o  reducing the height errors is 
a consequence of the fact that  the analysis procedure of the Kalman filter is multivariate, 
and moreover, that  the Kalman filter transfers the information content in the wind profilers 
observations appropriately to the height fields. 

Fig. 9.3 shows the spatial distribution of the forecast error standard deviations after 2.5 
days in the assimilation cycle. The contour maps are built from the square root of the 
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Figure 9.2: Results obtained with the Kalman filter: forecast and analysis expected error 
standard deviations averaged over the domain, for each of the three variables of the model, 
as a time function. The panels show t h e  result for the errors in the (a) zonal velocity, 
(b) meridional velocity, and (c) height. Each curve is indicate by the observational system 
in question, that is, A for radiosondes and B for the radiosondes and wind profilers. The 
height errors are given in meters while the wind errors are in meters per second. The dotted 
lines, indicated by OLV, refer to the radiosondes observational error levels for each of the 
variables, according to  Table 9.2. 
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I 

elements of the main diagonal part of PL for the winds and the height fields. The panels (a) 
refer to  the experiment with the A-network. including only the radiosondes, while panels (b) 
refer to  the experiment using both the A- and B-networks. In the case of the radiosonde- 
only assimilation [panels (a)] we see that the forecast error standard deviation practically 
uniformly distributed over the domain. This results from the fact that the radiosonde 
network is relatively uniformly distributed over the domain. The forecast error standard 
deviation in w. panel (a.2) has pronounced gradients near the North and South boundaries 
due to the boundary condition w = 0 along these boundaries. This boundary condition is 
equivalent to observing the variable Y along of the North and South boundaries, without 
observation error. The presence of the dynamics allow for the consequent appearance of 
gradients aIong the boundaries in the zonal wind and height forecast error fields as seen in 
panels (a.1) e (a.2). respectively. 

i a . 1 )  

i a . 2 )  

i a . 3 )  ( b . 3 1  

Figure 9.3: Spatial distribution of the forecast error standard deviation. Panels (a) refer to  
experiment A, while panels (b) refer to  experiment (B): (a.1) and (b.1) for t~,, (a.2) and 
(b.2) for o,, and (a.3) and (b.3) for o h .  Contour interval is of 1 m for height errors, and of 
0.5 m S-* for wind errors. 

The introduction of wind profilers, experiment with B-network, produces large gradients in  
the East-West direction, as seen in panels (b.l)-(b.3) of Fig. 9.3. These gradients result, 
from the fact that the wind profilers are mainly located in the central region of the domain, 
contrary t o  the radiosondes, and therefore reflect the differences between regions of dense 
observation density and those of sparse observation density. We also see that in the panels 
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referring to  the experiment in question, the Western error gradients are more pronounced 
than the Eastern ones. In other words, the  contours close to  the Eastern boundary are more 
separated among themselves t h a n  those close to  the Western boundary [more markedly 
noticeable in panels (b.1) and (b.3), for the forecast error standard deviations of u and h, 
respectively]. This is a sole consequence of the error propagation induced by the Kalman 
filter equations, which makes the wind profilers information in the central part of the domain 
be advected in the direction of the flow. Therefore, the forecast error standard deviation 
is smaller in the East than  in the West side of the wind profilers region. Specifically, this 
error propagation is due to the calculation of the first term in the expression (5.17), for Pi.  

It is important to  mention that current operational data assimilation systems do  not pos- 
sess the ability t o  propagate information in the pronounced way seen in the results of the 
experiment using the B-network. The reason is, as discussed previously in this and in the 
previous lecture, that the forecast error covariance matrix in operational systems is assumed 
stationary and prescribed in some way to cope with computational feasibility. The incor- 
poration of a dynamic flavor in the forecast error covariance matrix for operational systems 
has been the object of a great number of basic research. We can imagine, by what  we stud- 
ied so far, that  an  intensive line of research in atmospheric data  assimilation is the search 
for alternative ways t o  propagate error covariance that are computationally feasible and 
do not involve as many computations as those following the Kalman filter, or its nonlinear 
extensions. 

In what follows here we concentrate on alternatives to  simplify expression F2 in Table 
5.3.1, for the case of linear filter. Once the more viable alternatives for the linear case are 
determined, it is possible to  make extensions t o  the nonlinear case, which represent in fact 
the cases of practical interest in meteorology. The majority of existing approximations in 
the literature belong t o  one, or more, or the following categories (see Todling & Cohn [129] 
for more references and explanations): 

0 covariance error modeling (e.g., 01: Bergman [lo], Gandin [57], Jiang & Ghil [85], 
Lorenc [95], McPherson et al. [102]; SSI: Parrish & Derber [112]; three-dimensional 
variational analysis (3D-Var): Andersson et al. [e], Heckley et al. [74], Pailleux [ l l o ] ,  
VasiljeviC et al. [133]; PSAS: da Silva et al. [37]) 

0 dynamic simplification (e.g., Dee [43], Todling & Cohn [129]) 

0 reduced resolution (order resolution; e.g., Cohn & Todling [34], Fukumori [54], Fuku- 
mori & Malanotte-Rizzoli [55], Le Moyne & Alvarez [92], Verlaan & Heemink [135]) 

0 local representation (e.g., Boggs et al. [16], Cohn [28, 291, Parrish & Cohn [113], 
Riedel [ 1181) 

0 limiting filtering (e.g., Fu  e t  al. [53], Fukumori et al. [56], Heemink [75], Heemink & 
Kloosterhuis [76], Hoang et al. [77]) 

0 Monte Carlo approach (e.g., Leith [93], Evensen [51]) 

Some of these possibilities have been tested in the context of the the Kalman filter applied 
to  the linear shallow-water equations with the goal of investigating its behaviors in com- 
parison with the exact result provided by the Kalman filter. We describe briefly below the 
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approximations considered in Todling & Cohn [129] for stable dynamics, and in Cohn & 
Todling [34] for stable and unstable dynamics. These approximations range from a sim- 
plified representation of the assimilation scheme by optimal interpolation [OI; item (a)], a 
somewhat improved version of 01 which allows for advection of the height error covariance 
field by a n  advection operator A [HVA; section item (b)], to  a n  even more sophisticated 
scheme that allows for the propagation of all height-height error covariance field by means 
of a simplified dynamics A [SKF; item (c)]. Since these schemes specify the height-height 
error covariance, it is necessary to  use an  algorithm to generate the missing covariances 
and cross-covariances. A t  this point we can impose the geostrophic balance constraint, 
however, as we have mentioned before, th i s  does not generate good results, except in  some 
cases. Alternatively, we can use the cross-variance generation algorithm studied previously 
in th i s  lecture. Some of the schemes cited below use this procedure. 
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Figure 9.4: AnaIogoiis to Fig. 9.2, but only for the case of the B-network. The curves refer 
to  the evaluation result of the performance of different approximations for the system of 
Cohn & Parrish. The approximations being evaluated are: balanced optimal interpolation 
with domain averaged error growth (OID); balanced optimal interpolation with latitudinal 
dependent error growth (OIZ); advection of balanced height error variance field (HVA); and 
advection of balanced height-height error covariance field (SKF). The Kalman filter results. 
that serve as the basis of comparison to  these approximations are those indicated by the 
curves B in Fig. 9.2. 

A summary of the results of evaluation of these approximations is presented in Fig. 9.4. 
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Considering the system of Cohn & Parrish [33], for the B-network case, the curves in the 
figure show the performance of two types of 01: OID, which uses a single constant value for 
the height error variance growth rate (elements along the diagonal of matrix Dh mentioned 
in item (a) below); and OIZ, which uses a height variance growth rate with latitudinal 
dependency. Also, the performance of the two other schemes, the HVA and the SKF, is 
concisely described in items (b) and (c) below. The figure shows the gradual improvement 
occurring when we increase the sophistication of the assimilation scheme, due to  the gradual 
incorporation of dynamic information. In particular, the performance of the SKI: scheme 
is practically indistinguishable from the  exact result shown in Fig. 9.2 (curves B). 

The  way in which the schemes 01, HVA and SKF incorporate some dynamics (or not, in the 
case of 01), in the generation of forecast error covariances is very simplistic. To test these 
simplifications further an unstable dynamical system has been considered. Although the 
Kalman filter for unstable linear systems produces reliable results (see Ghil & Todling [65] 
and Todling & Ghil [130]), approximate assimilation schemes, based on the ideas described 
above, do  not produce results equally reliable. In th is  way, alternative da ta  assimilation 
schemes are necessary; some possibilities are briefly described in the last items (d) and (e) 
below. Both schemes described in these items are iterative. An Lanczos type algorithm 
(e.g, Golub & Van Loan [67]) is necessary to implement either schemes. The partial singular 
value decomposition filter (PSF) [item (d)] proposes to  use the L leading singular modes 
of the propagator (tangent linear model) to propagate the analysis error covariance matrix; 
the partial eigendecomposition filter (PEF) [item (e)] proposes to  generate only L leading 
eigenvalues/vector of the forecast error covariance matrix, S P .  These two schemes are 
low-rank and information referring to the trailing part of the error covariances, which we 
designate by S; ,  should be provided in some way. That  is, in these two cases there is a 
need to  model trailing error covariances. These approximations are adequate also for stable 
dynamics. 

(u) Optimal Interpolation 

Category: Error Covariance Modeling 

Forecast Error Covariance Matrix Partition S i  : 

Block corresponding to  the forecast error covariance (hh): 

D, f Ih is a diagonal matrix n/3 x n/3 corresponding to  the height error variance; 

Chh is the height-height error correlation matrix n / 3 x  n/3 ,  which is prespecified. 

D k  is in general modeled to account for a h e a r  variance error growth in time 
according to  

f Ih 

DLIh = DiFl + Dh 
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where C is the number of model time steps between two consecutive analyses; 
Dh is a diagonal matrix corresponding to  the error growth. 

Chh is prespecified assuming homogeneity and isotropy of the mass error field, 
and it is usually considered to  be Gaussian. The rest of the error covariance 
matrix is obtained by the balanced covariance generation procedure described 
previously. 

(b)  Variance Evolution 

Category: Local representation 

Height error variance propagation: 

where &+e represents the operator of an advection scheme. 

Construction of the height-height error covariance matrix: 

~ P l h h  = ( ~ P l h  k )  1 / 2 ~ h h ( ~ ; l h ) l / 2  
k 

The covariances remaining are calculated by means of the balanced covariance 
generation procedure discussed above . 

(c) Simplified Kalman Filter 

Category: dynamic simplification 

Propagation of Height-height error covariance: 

where Ak,k-e represents the operator of an advection scheme; the balanced 
covariances generation procedure is used for the remainder of the covariances. 

(d) Partial Singular Value Decomposition Filter 

Category: Local representation/reduced resolution 

Forecast error covariance: 

Sf - P k - s k 9 k - f  Q k , k - f  
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where s P , , k - e  is the dynamically propagated part - predictability error covari- 
ance. 

Consider the following singular value decomposition of the propagator \ k k , k - e :  

* k , k - e  = (u D V T )  k,k-e 

and partition the matrices above in leading (L) and trailing (T) parts so that: 

u k , k - e  = [ V I ,  U T ] k , k - e  7 V k , k - e  = [ V L  V T ] k , k - e  

D k , k - e  = [ D L  ] 
DT k , k - e  

Consider the following model for S i , k - e :  

SP,,,-, = (s; + S%)k ,k -C  = (* S" GT + s;) 
k , k - e  

where 
* k , k - e  = (UL DL v:) k ,k -e  

so that, 

where d; = diag(DL); ,  u; = c o l ( U ~ ) ; ,  vi = c o Z ( V ~ ) i ,  

e NL = nO c o Z s ( V ~ ) .  

S ;  is specified by an  adaptively tuned covariance model based on the innova- 
tions. Computational cost - o( 1OL) model integrations. 

(e)  Partial Eigendecomposition Filter 

Categorv: Local reDresentation/reduced resolution 

Forecast covariance error: 

s k  f -  - sk ,k -e  P + Q k , k - e  

where SP,,,-, is t h e  dynamically propagated part - predictability error covari- 
ance. 

Consider the following eigendecomposition for the forecast error covariance S p :  

k , k - e  sP,,,-, = (Q S" Q*) = (UDUT) 
k , k - e  

and partition the factors above in leading (L) and trailing (T) parts: 
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D k , k - t  = [ DL ] 
DT k , k - t  

Assume the following approximation for S E , k - e :  

Sk is specified for a n  adaptively tuned covariance model based on the innova- 
tions. Computational cost - o( 1OL) model integrations. 

The motivation to search for approximate schemes for covariance propagation, instead of 
ways of implementing an algorithm for complete error covariance propagation, goes beyond 
the fact that the latter is computationally infeasible. In fact, even if calculating the complete 
covariance evolution were (or comes to  be) feasible, it would be a wast of computational 
resources, since: 

0 The governing equations are nonlinear! consequently only approximate schemes are 
possible - in general, we cannot calculate moment,s of all orders. 

0 Many observational systems involve nonlinear relations among the forecast and ob- 
served variables. Therefore, the same problem mentioned in the item above applies, 
i.e., we cannot calculate moments of all orders. 

0 Lack of knowledge of model and observation error statistics. This means that ,  at 
best we have to approximate, model and parameterize these quant,ities: forcing the 
assimilation system in  t o  a sub-optimal situation. 

0 The number of available observations in a given time is relatively close to  the number 
of degrees of freedom of the system, and it tends to  become even greater. This means 
that the equations for the analysis step, that is, equations F3, F5 of Table 5.3.1, or 
their nonlinear equivalents, should be approximated in some way, due to the excess 
of computational effort required to  solve them exactly. 

Even the promising developments in parallel computation [78, 79, 1001, and the possibility 
of an increase in computational capability, will not be sufficient t o  solve the covariance 
propagation equation completely. This because the tendency in meteorology has been to 
increase the resolution of general circulation models, whenever there is an increase in com- 
puter power. Thus, pushing computers to their limit, just to produce a forecast, leaving 
little room for forecasting the statistics . It will always be necessary to have approximate 
models for error covariance propagation, t o  make operational systems for atmospheric data  
assimilation computational feasible and practical. 
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9.3 The Fixed-Lag Kalman Smoother 

9.3.1 Theory 

Let u s  address the issue of improving a n  estimate provided by the Kalman filter by making 
use of observations past the analysis time. Let us use the Bayesian approach for this purpose, 
but t o  keep the derivation simple we consider only the problem of improving the estimate 
a t  time t k - 1  given the observations at just one time step ahead that time, that is, at time 
t k .  This constitutes the lag-1 smoother problem (this can be identified with the fixed-point 
smoother). We could extend the problem to that of improving the filter state estimate 
at time tk-e  using observations up to and including time t k .  This is the general, lag-e', 
fixed-lag smoother problem. The solution to  the general problem can be found in a variety 
of texts, as for example, Anderson & Moore [l] and Meditch [103]. 

In complete analogy to the  previous section we can seek for the minimum variance estimate, 
which written in terms of the conditional mean is 

(9.54) 

where we use the notation jlk to  indicate the estimate at t,ime tj conditioned on observations 
up t o  and including time t k .  Notice that  in this notation the analysis estimate provided by 
the Kalman filter can be indicated as wilk, and the forecast estimate can be indicated as 

PLlk-l , respectively. Once again, the fundamental quantity t o  determine is the conditional 
probability density p(w;-, IW;) in the expression above. 

w ~ ~ ~ - ~ .  f Similarly, the analysis and forecast error covariances can be indicated by PElk and 

Repeated use of the definition of conditional probability gives 

(9.55) 

'This e here is not to be confused with the e used earlier in this notes t o  denote the number of time 
steps between two consecutive model time steps. Remember that the number of model time steps between 
consecutive observations has been fixed to one from Fig. 5.1 on. 
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where the last equality is obtained after noticing that the observation sequence is white in  
time. In this  equation we recognize the denominator as being the same denominator as 
that  in (5.27) corresponding to the probability density function of the innovation vector. 
Moreover, changing k into IC - 1 in (5.38) we can identify p(wi-.llWi-l) as the probability 
density function of the filter analysis at time tk -1 .  Thus,  the only quantity remaining to  be 
calculated in the expression above is the first term in the numerator. 

Because the statistics of all errors and initial state are Gaussian, the probability density 
p ( ~ i \ w i - ~ )  is also Gaussian and can be written as 

where kk denotes the following conditional error covariance 

6 . k  l{[w; - l{wilW;-1}][wi - &{wilw~-l}]Tlwi-~} (9.57) 

Using (5.1) and (5.3) we can calculate the conditional mean above as 

t f{wiIwi-i} = &{(Hkwi +vk)Iwk-i) 
t 

1 

= Hkqk-1Wk-l t (9.58) 

where we noticed that the noise sequences {bi} and {vk} have mean zero. Similarly, it 
follows that  the conditional error covariance 6 . k  is given by 

f((Hkqk-lWL-1 + Hkbi-1 + V k ) l w k - l }  

6 . k  = HkQk-iHT+Rk (9.59) 

This completes the amount of information required to  fully determine the probability density 
(9.56) and consequently the probability density (9.55). 

Substituting (5.27) with k + k - 1, (5.31) and (9.56) in (9.55) it follows that 

(9.60) 

where the first two terms in J come from the two terms in the numerator of (9.55), respec- 
tively, while the last term in J comes from the denominator of (9.55). 
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Hence, the the probability density function in (9.54) can be written as 

(9.62) 
where its maximum  WE-^,^ corresponds to the estimate we are seeking and is given by 

Wi-llk = wg-1 + Pg-l'@z-lHFI'il(wg - H k ~ k f ) ,  (9.63) 

with corresponding error covariance 

(p:-llk)-l = (P;J~ + . (9.64) 

These quantities are sometimes referred to  as the retrospective analysis and the retrospective 
analysis error covariance matrix, respectively (see Todling et al. [131]). 

In complete analogy to the remark made when introducing the maximum n posteriori func- 
tional J M A P  in  (4.65), we could derive the same results in (9.63) and (9.64) by minimizing 
the cost function J M A p  for this case, that  is, 

JMAp(~:-l) E (wg- HkQk--TW:-l) T'-1 Rk (wi - HkQk-lw:-l) 

(9.65) 

As before, this corresponds t o  considering only the probability distributions in the numer- 
ator of (9.60). 

T + (WL-1 - WE-1) (pgJ1(W:-l - wt-1) * 

An alternative expression to  (9.64) can be obtained using the Sherman-Morrison-Woodbury 
formula (c.f., Golub & Van Loan [67], p. 51), which gives 

PZ-llk = Pt-1 - P;l-l\k~-lHzrklHk\kk-iP~-l 

= pt-1 - Kk-llkHkPpk-llk-l (9.66) 

where we introduced the following definitions, to  write the last equality: 

(9.67a) 

(9.67 b) 

Observer that the advantage of expression (9.66) over (9.64) for P;l-llk is that (9.66 does 
not involve the inverse of usually large error covariance matrices. Also, with the definitions 
in (9.67), the expression for the lag-1 smoother estimate (9.63) becomes 

WZ-llk = WE-1 + Kk-llk(Wi - H k W k )  f (9.68) 

Therefore, the smoother analysis at time t k -1  using data up to  a n  including t k  corresponds 
t o  a n  update of the filter analysis at time tk-1, based on the same innovation vector 
used to  calculated the filter analysis at the time of the latest observation, t k .  

The procedure above can be generalized to  any number of lags larger t h a n  one, but the 
probabilistic framework above does not provide the simplest method for this generalization. 
A much simpler way is t o  use the approach of state augmentation combined with the 
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minimum variance approach we described earlier in  this notes. This procedure is outlined 
in  Anderson & Moore [I], and it is explicitly invoked in Todling & Cohn [128] to  derived 
the nonlinear extended fixed-lag smoother. Here, we only list the equations that needed 
to  be supplemented t o  the linear Kalman filter so it becomes the linear fixed-lag Kalman 
smoother: 

where the generalization of definitions (9.67) are 

respectively. In applying these expressions to  the case we have just derived of C = 1 we 
must recognize the fact that  we used a compact notation for the filtering problem, since 
in that caSe it avoided unnecessary complexity. Explicitly, when using C = 1 in  (9.6%) we 
are confronted with the estimate wE-llk-l , on the right-hand-side of the equation, which 
ultimately arises from the filtering problem. The filter estimate at time t k - 1  is conditioned 
on all observations up to  and including time t k - 1 ,  which is just (5.24): 

(9.71) 

which reduces to the simpler notation used in the filtering problem. A similar argument 
applies t o  the analysis error covariance P;-llk-l we encounter when substituting e =  1 in 
(9.69b) and (9.69c), i.e., we must realize that PE-llk-l = Pa,-,. In this case, however, 
not using the notation with the conditioning explicitly written is more than just notational 
simplification for the filtering problem. It represents the fact that  the filter error covariances 
are not conditioned on the data,  as we observed in (5.41) and (5.42). 

9.3.2 Application to a Linear Shallow-Water Model 

Let us  now examine the results of the fixed-lag Kalman smoother applied t o  the linear 
shallow-water model of the previous section. The interest here is t o  improve up on pre- 
viously calculated filter analysis by using da ta  past the analysis time. Following Cohn et 
al. [35], we consider the case of the A-network introduced above, but to show the more 
stringent results from that work we consider the case in which only the western half of the 
radiosondes are used in the assimilation experiments. 

Figure 9.5 displays the time evolution of the domain-averaged root-mean-square errors for 
a period of 10 days of assimilation. The figure depicts only to  the analysis errors, for all 
three variables of the model, in contrast t o  Fig. 9.2 where both the analysis and forecast 
errors are displayed, for these variables. This means tha t  whenever comparing both figures, 
we should only care about the lower envelope of the curves in Fig. 9.2, corresponding to  
the analysis errors. The results in Fig. 9.5 are for both the Kalman filter and the Kalman 
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Figure 9.5: Expected analysis error standard deviations averaged over the domain, for 
each variable of the model, as a function of time. Panels are ordered as in Fig. 9.2, and 
results are for the fixed-lag Kalman smoother using only the western half of the radiosonde 
observations displayed in Fig. 9.1. The uppermost curve in each panel corresponds to  
the Kalman filter analysis (analogous t o  the lower envelope of the curves in Fig. 9.2), and 
successively lower curves are for the retrospective analysis results for 12-hour lags e = 1 , 2 , 3  
and 4. 
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smoother for up to lag e =  4. The highest curve on each panel correspond to  the filter errors. 
When compared against the corresponding curves (labeled A) in Fig. 9.2, we see that the 
errors are now larger, for all variables, than they were. This is a consequence of the fact 
that  the number of observations is roughly one-half of what it is in the experiment with the 
A-network of Fig. 9.2. Successive lower curves, than the filter curve, in each of the panels 
in  Fig. 9.5 refer to  successive retrospective analyses obtained using da ta  12,24,36, and 
48 hours ahead of the analysis time. These correspond to  the fixed-lag Kalman smoother 
results for lags e = 1,2,3,  and 4, respectively. The improvement achieved by the consecutive 
retrospective analyses is clearly seen by the decrease in the errors with the increase of the 
lags. 

I a . 2 )  ( b . 2 )  

Figure 9.6: Maps of analysis error standard deviations at day 2 of the assimilation period 
for the fixed-lag Kalman smoother. Panels (a.l)-(a.3) refer t o  errors in u for the Kalman 
filter and Kalman smoother for lags e = 1 and 4, respectively; panels (b.l)-(b.3) refer to 
errors in h for the Kalman filter and Kalman smoother for lags 1 = 1 and 4, respectively. 

To further illustrate the analysis improvement due to smoothing we show in Fig. 9.6 maps 
of the analysis errors in the u (left panels) and h (right panels) fields, at day 2. The 
top-two panels are for the filter analysis, the central-two panels for lag = 1, i.e., when 
the smoother uses da ta  at day 2.5 to  further correct the filter analysis at day 2, and the 
bottom-two panels are for lag e = 4, that  is, when da ta  between days 2.5 and 4 have 
been used to correct the filter analysis at day 2. Looking at the filter results [panels 
(a.1) and (b.l)], we see that  the large errors are located over the eastern part of the do- 
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main, where there are no radiosondes in this case. This is more dramatically seen from 
the height error fields, but the same is true for all fields, including the errors in w (not 
shown). Just as we encountered before for the case of Fig. 9.3, the contours in the t o p t w o  
maps reflect the change in the observational data  density. Moreover, the larger separa- 
tion among the contours as we look from West t o  East reflect the advection of errors in  
the direction of the flow. Looking at the retrospective analyses results in the central-two 
and bottom-two panels, we observe a n  overall reduction of errors, especially for the lag 
l = 4 case, when compared against the top-two panels in the figure. However, the most 
striking feature of all in the figure is the propagation of the “region” of maximum analy- 
sis errors over the data void from East to West, as we look down from the top panels in  
the figure to the bottom panels, in each column. The magnitude of maximum errors not 
only gets reduced but also propagates against the flow. This illustrates the ability of the 
fixed-lag smoother t o  propagate information upstream (see also Mbnard & Daley [105]). 

EXERCISE 

The Kalman filter applied to  a linear advection equation. Consider the one-dimensional 
advection equation 

dU dU - t u - = o  
d t  dX 

where U = const. represents the advection speed, applied t o  a periodic domain defined by 
the interval [-2, 21 over the line. Take for initial condition a “rectangular” wave of the form 

1, for -1 5 x 5 0 
0 ,  otherwise u ( x , t  = 0 )  = 

Using a n  up-wind finite difference scheme we can write an approximate solution to  the 
advection equation as 

wj = CV,-l + (1 - C)Wj 

where vj represents the numeric solution for u ( x  = j A x )  with A x  as the spatial interval, 
and where C = U A t / A x  is the Courant number, with time step At. 

Simulation experiments: Using the parameters in the table below, obtain plots of the state 
evolution at the initial and final times for an integration taken from To = 0 to  tjinal = 1 
using the following Courant numbers: (i) C = 1, C = 0.95, and C = 0.95. Explain the 
difference in the results. 

Table 9.3: Parameters for the finite-difference. 
Domain 
Mesh size AX = 0.2 
Time step At0.05 

for -2 5 x 5 2 

Let us now slowly build the components to  have a Kalman filter assimilation experiment 
constructed. We assume that all error statistics necessary for the filter are Gaussian and 
white. What we have t o  do next is t o  construct error covariance matrices for all stochastic 
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processes involved in the problem. For simplicity, we take the  perfect model assumption, 
so that we do not have to worry about the model error bi and its error covariance Q k ,  
i.e., bk = 0 at all times. Moreover, we assume there are no correlations among observation 
errors, so that the observation error covariance matrix Rk is diagonal. Furthermore, this 
matrix is asslimed to be time independent with elements alone the diagonal to  be specified 
depending of the experiments to  be performed below under these conditions. The only 
error covariance left t o  specify it that  of the initial estimate, P:. Constructing spatial 
error covariances that really satisfy the requirements of being an error covariance can be 
a pretty delicate issue. Instead of getting into these problems, we use a Matlab function 
gcorr provided with th is  exercise to  construct an  appropriate error correlation field that 

can ‘$ e used to generate the require covariance matrix. Use the help of this function t o  see 
its usage and perform the following tasks for three different choices of the  (dc)correlation 
length parameter Ld = 0.5.1 and 1.5 the following plots: 

1. Is the matrix you constructed a n  acceptable correlation matrix? 

2. Plot t h e  two-point correlation function at  two distinct arbitrary locations, Comment 
on what you see. 

3. Make a contour plot of the correlation matrix. What you will see corresponds t o  the 
“shape” of a homogeneous and isotropic correlation matrix. 

Now write a Matlab program with the Kalman filter equations for the  state estimates w k  f 

and WE, and their corresponding covariances PL and P&, respectively. 

In this problem we use wha t  is called simulated observations, where we take the solution 
of the advection equation at specific spatial locations and time intervals Atobs and add a 
Gaussian distributed error to  it. This can be done in Matlab using the random number 
generator ml for normally distributed variables. 

The following experiments fall in the category of what is referred in the literature as wave 
genemtion, where we take the initial guess (initial analysis) to  be zero, i.e., W E  = 0 and we 
try to  reconstruct the true state processing the observations with the Kalman filter. 

In what follows, you are asked to  make plots for the true state and its estimate at the 
final time of the assimilation as well as plots of the time evolution of the domain-averaged 
forecast and analysis error standard deviation. 

Half observation covemge case: The first case we consider is one for which the observation 
are all located over the left-half of the domain. 

1. Following the choice of parameters in  the table below, obtain t h e  output for the true 
state and its estimate at the final time of the assimilation experiment. 

2. What happens if the observation error level is increased to  0.1? 

3. What happens if in  the previous case, the assimilation period is 5 time units? 

4. Comment on the results you just obtained. 
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Table 9.4: Observational error standard deviations. 
Assimilation time period 
Courant number 0.95 
Obs frequency 4 x At 
Obs error std dev 0.02 
Obs sparsity 

1 time uni t  

left-half of grid points 

You can try lots of other combinations and possibilities with this little program. There is 
a lot you can learn from just a small example such as this. Changing at least one of the 
parameters in the table above, here are a couple of other possible scenarious to  investigate: 

0 Take observations at  every grid point. 

0 Change the Courant number to make the dynamics more (numerically) dissipative. 

What  happens to  the filter results in these cases? 
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